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LICENSE

THE PROGRAM (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF
THIS LICENSE. THE PROGRAM IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE PROGRAM OTHER THAN AS AUTHORIZED
UNDER THIS LICENSE IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE PROGRAM PROVIDED HERE, YOU AC-
CEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LI-
CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF
YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. 'Derivative Program" means a program based upon the Program or upon the Pro-
gram and other pre-existing programs in which the Program may be recast, transformed,
or adapted, except that a program that constitutes a Package will not be considered a
Derivative Program for the purpose of this License.

b. "Licensor" means the individual or entity that offers the Program under the terms of
this License.

c. "Original Author" means the individual or entity who created the Program.

d. "Package" means a software package, in which the Program in its entirety in unmodified
form, along with a number of other contributions, constituting separate and independent
programs in themselves, are assembled into a collective package. Such a Package will not be
considered a Derivative Program for the purposes of this License.

e. "Program" means the copyrightable computer software, including executable and
source code, offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Program, or who has received
express permission from the Licensor to exercise rights under this License despite a previous
violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any
rights arising from fair use, first sale or other limitations on the exclusive rights of the
copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
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grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the ap-
plicable copyright) license to exercise the rights in the Program as stated below:

a. to reproduce the Program, to incorporate the Program into one or more Packages,
and to reproduce the Program as incorporated in the Packages;

b. to distribute copies of the Program including as incorporated in Packages;

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as are
technically necessary to exercise the rights in other media and formats. All rights not
expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

a. You may distribute the Program only under the terms of this License, and You must
include a copy of this License with every copy of the Program You distribute. You may not
offer or impose any terms on the Program that alter or restrict the terms of this License or
the recipients’ exercise of the rights granted hereunder. You may not sublicense the Program.
You must keep intact all notices that refer to this License and to the disclaimer of warranties.
You may not distribute the Program with any technological measures that control access or
use of the Program in a manner inconsistent with the terms of this License Agreement. The
above applies to the Program as incorporated in a Package, but this does not require the
Package apart from the Program itself to be made subject to the terms of this License.

b. You may not exercise any of the rights granted to You in Section 3 above in any
manner that is primarily intended for or directed toward commercial advantage or private
monetary compensation.

c. If you distribute the Program or any Packages, You must keep intact all copyright
notices for the Program and give the Original Author credit reasonable to the medium or
means You are utilizing by conveying the name (or pseudonym if applicable) of the Original
Author if supplied; the title of the Program if supplied. Such credit may be implemented in
any reasonable manner; provided, however, that in the case of a Package, at a minimum such
credit will appear where any other comparable authorship credit appears and in a manner
at least as prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer

a. By offering the Program for public release under this License, Licensor represents and
warrants that, to the best of Licensor’s knowledge after reasonable inquiry:

i. Licensor has secured all rights in the Program necessary to grant the license rights
hereunder and to permit the lawful exercise of the rights granted hereunder without You
having any obligation to pay any royalties, compulsory license fees, residuals or any other
payments;

ii. The Program does not infringe the copyright, trademark, publicity rights, common
law rights or any other right of any third party or constitute defamation, invasion of privacy
or other tortious injury to any third party.

b. EXCEPT AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED
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IN WRITING OR REQUIRED BY APPLICABLE LAW, THE PROGRAM IS LICENSED
ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES REGARD-
ING FITNESS OF THE WORK FOR A PARTICULAR PURPOSE.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLI-
CABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION
5, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY
FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE PROGRAM,
EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received Packages
from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7,
and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual
(for the duration of the applicable copyright in the Program). Notwithstanding the above,
Licensor reserves the right to release the Program under different license terms or to stop
distributing the Program at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is required to be, granted
under the terms of this License), and this License will continue in full force and effect unless
terminated as stated above.

8. Miscellaneous

a. Each time You distribute the Program or a Package, the Licensor offers to the recipient
a license to the Program on the same terms and conditions as the license granted to You
under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this License,
and without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

¢. No term or provision of this License shall be deemed waived and no breach consented
to unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the
Program licensed here. There are no understandings, agreements or representations with
respect to the Program not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.



Preface

SEAPODYM is a numerical modelling framework developed initially for investigating pop-
ulation dynamics of tunas under the influence of environment and fishing (www.spc.int/
ofp/seapodym; www.seapodym.eu). The modelling effort started in 1995 at the Pacific
Community (SPC) in Noumea, New Caledonia, under two consecutive EU-funded projects:
SPR-TRAMP (1995-2000) and PROCFISH (2002-2005). The model development has con-
tinued under a grant from the Pelagic Fisheries Research Program (PFRP) at the University
of Hawaii, allowing the implementation of a quantitative approach to estimate model pa-
rameters from massive spatio-temporal catch and size data (2004-2007). Since 2007 the
development has been conducted at Collecte Localisation Satellites in Toulouse, France,
in collaboration with the Oceanic Fisheries Program of SPC and under various research
projects and funding provided by PFRP, the European Commission, Global Environment
Facility (GEF) and the French National Research Agency.

SEAPODYM includes two conceptually different dynamical models: i) a model of spatio-
temporal dynamics of functional groups of zooplankton and micronekton, that is called
SEAPODYM for Lower and Mid-Trophic Level (SEAPODYM-LMTL), and ii) a model de-
scribing full spatio-temporal dynamics of a single species population, called SEAPODYM for
Migratory Age-Structured Stocks (SEAPODYM-MASS). The underlying continuous equa-
tions of SEAPODYM-MASS are classical advection-diffusion-reaction equations with an age-
ing term, describing the population dynamics in time, age and two-dimensional space. Using
environmental data and outputs of the SEAPODYM-LMTL model as a forcing, this model
predicts the biomass of modelled species as well as the catch and size frequency of catch
based on parameter estimation and data assimilation techniques.

This reference manual describes version 4.0 of the SEAPODYM-MASS model and soft-
ware, which has been updated and enhanced with a method for integrating tagging data to
inform movement parameters, a new mechanism of modelling seasonal migrations between
feeding and spawning grounds, revised definitions of habitat indices and movement rates,
and a method to account for fishing mortality and to predict catch in the absence of fishing
effort data. In addition to a complete model, this version allows running the simulations and
estimations of movement parameters of a single or selected cohorts using tagging data and
building the following minimal models with maximum likelihood estimation (MLE) method:
i) a model of spawning habitat, ii) a model of feeding habitats for selected age classes, and
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iii) a model of virgin stock (without fisheries) with population density considered as an ob-
servation in the likelihood. These model applications can be used in model downscaling
and/or adaptation to a different forcing dataset.

After a general introduction, this reference manual provides the full mathematical descrip-
tion of underlying continuous models, the numerical approximation scheme, a comprehensive
guide on how to run numerical simulations and design various simulation studies, and a suite
of numerical and statistical recipes for data assimilation in complex spatio-temporal fisheries
models, aimed at informing model parameters from massive geo-referenced data and pro-
viding quantitative model reconstruction of observed phenomena as well as unbiased model
predictions of the independent observations.



List of changes from version 3.0

o Integration of a movement model of tagged fish and tagging data likelihood.

o Implementation of an alternative approach to account for fishing mortality and to
predict catch without fishing effort, i.e. based on observed catch only.

e Introduction of an additional likelihood term to allow estimation of minimal biomass
supporting observed catches.

o A fully revised method to describe seasonal spawning migrations with a new mechanism
of modelling large-scale migrations in the Eulerian model context.

« Revised spawning habitat as a product of prey, predator and thermal functions, the
latter with seasonal variable when playing the role of movement habitat of spawning
adults.

« Estimation of one additional parameter associated to each functional group of prey,
providing more flexibility in the representation of vertical behaviour and access to
preferred forage when computing the feeding habitat index.

e Decoupled optimal temperature and thermal range for larval survival and for feeding
habitat at age zero, to allow a separate estimation of these parameters.

« Extension of sensitivity analysis by allowing two types of model global sensitivity runs:
all-at-a-time (AAT) and one-at-a-time (OAT) runs, with names referring to the model
parameter variations.

» A standalone habitat models build seapodym__habitats, computing either spawning
or multiple feeding habitats (at selected ages) in a simulation or optimisation mode,
with associated parameter estimation from provided habitat fields.

o A standalone model build seapodym__densities for population dynamics without
fisheries, where biomass is considered both as observations and predictions in the like-
lihood.
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» Various code modifications to minimise the memory use during adjoint gradient com-
putation.
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Introduction

The Spatial Ecosystem And POpulation DYnamics Model (SEAPODYM) is being contin-
uously enhanced to provide a general framework allowing integration of biological and eco-
logical knowledge of migratory species, primarily tunas and potentially other oceanic top
predator species, within a comprehensive description of the pelagic ecosystem. It includes
detailed relationships between the population dynamics and basic biological and ecological
functions, a realistic representation of the vertical oceanic habitat in terms of both physical
and foraging conditions. The forage fields are predicted by a separate model in which various
mid-trophic level organisms (micronekton) are classified by their diel migration pattern, and
the spatiotemporal transfer of energy from oceanic primary productivity to the micronekton
is described using an allometric scaling equation and passive transport of the biomass with
oceanic water masses. The environmental variables that drive fish dynamics (temperature,
currents, oxygen and primary production) are predicted by coupled physical-biogeochemical
models. The model also includes a rigorous mathematical parameter estimation procedure
using available catch and size frequency data. Because the model includes detailed rep-
resentation of the biophysical environment of the species, the complete spatially explicit
population dynamics can be described with a small number of parameters. In return, such
a model depends strongly on the quality of environmental forcing variables.

When considering the definition of an ecosystem, that is, how assemblages of species
are organised in space and time, and how they interact with each other and the physical
environment, modelling the ocean pelagic ecosystem is obviously a challenge that requires
drastic simplifications. These simplifications need to be considered carefully alongside the
level of observations and knowledge that we have for each component of the system, to make
sure that the model can be properly parametrised and can adequately describe observed
processes. In addition, the model is focusing on the population dynamics and the fisheries of
exploited species, as there is a special interest to provide a new generation of modelling tools
for the management of these species, taking into account not only the impact of the fisheries
but also the natural fluctuations of the populations in their climate-driven ecosystems. Top
predators in the marine pelagic ecosystem are essentially opportunistic omnivorous preda-
tors. Their diets reflect both the faunal assemblage of the components of the ecosystem that
they explore and their aptitude to capture prey species during different periods of the day

13
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(i.e., daytime, night-time and twilight hours). It seems that most of them are in the upper
layer during the night. But high sensory specialisation (e.g., olfaction in sharks, vision in
bigeye tuna, swordfish and cephalopods, and echolocation in marine mammals), and morpho-
logical and physiological adaptations (e.g., thermoregulation) allow them also to exploit the
darker and colder, deeper layers. The three-layer ocean definition used for the mid-trophic
(forage) species seems to match particularly well with the known vertical behaviour of large
predators (Figure 1.1).

1
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| \/ V l_/ \/ L/ ‘/. inter-
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§ deep
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Figure I.1: Five typical vertical movement behaviours simulated using a three-layer and two-
type-of-prey pelagic system (adapted from Dagorn et al. 2000): 1, epipelagic predators (e.g.,
skipjack tuna, marlins and sailfish); 2, predators moving between the surface and intermedi-
ate layers during the day (e.g., yellowfin tuna); 3, predators mainly in the intermediate layer
during the day (e.g., albacore tuna); 4, predators moving between deep and intermediate
layers during the day (e.g., blue shark); 5, predators mainly in the deep layer during the day
(e.g., bigeye tuna and swordfish).

Large pelagic predators are often exploited species for which there is detailed knowledge
on biology, physiology, population structure and fisheries data. Describing the spatial dy-
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namics of these fish populations at oceanic scales is of paramount importance for fisheries
management, so as to understand and predict the consequences of fishing, climate change and
changes in fishery management regulations. Many spatially explicit models have been de-
veloped for fish populations; however, most of them are Lagrangian models considering only
passive movements of small fish or early life stage individuals transported by currents (see,
e.g., DeAngelis and Yurek, 2016; Rossi et al., 2014; Popova et al., 2019; Ramesh et al., 2019;
van Sebille et al., 2018). Parametrisation of Lagrangian models can only be done by manual
calibration, using empirically derived parameter values or relying on estimates from external
models (as in, e.g., Scutt Phillips et al., 2018). Advection-diffusion-reaction (ADR) equations
were suggested by many mathematical ecologists as an elegant solution to deal with complex
spatio-temporal patterns arising from animal behaviour (see, e.g., Keller and Segel, 1971;
Okubo, 1980; Okubo and Levin, 2001; Murray, 1989; Grunbaum, 1998, 1999; Flierl et al.,
1999; Tyutyunov et al., 2004; Tyutyunov and Titova, 2017; Berezovskaya and Karev, 2013;
Petrovskii et al., 2002). While ADR equations are unsuitable for low-abundance populations
sparsely distributed in space, they provide a very convenient framework for modelling spa-
tial dynamics of migratory species that occupy vast oceanic regions and may create low- and
high-density concentrations. The movement dynamics within ADR equations are governed
by the distribution of stimuli attracting or repulsing the population density. This classi-
cal approach has been thoroughly studied in theoretical movement ecology, widely used in
various modelling applications and its interconnections with individual movements are well
understood (Okubo et al., 1977; Okubo, 1980; Grunbaum, 1994, 1998, 1999; Flierl et al.,
1999; Turchin, 1998; Faugeras and Maury, 2007; Tyutyunov et al., 2013; Tyutyunov and
Titova, 2017).

The advantages of using ADR equations can be summarised as follows. While predict-
ing the trajectory of a single individual is impossible due to the stochastic component of
its movement, the evolution of density distributions of a large number of individuals can
be effectively predicted in a continuous advection—diffusion framework (Grunbaum, 1999;
Flier] et al., 1999; Tyutyunov et al., 2004). In addition, explicitly modelling movement not
only leads to a reduced number of model parameters and simplified local (in every posi-
tion in space) functional responses (e.g., Arditi et al., 2001; Tyutyunov and Titova, 2017),
but also allows considering simple aggregated statistics (e.g., mean squared step length) in
model parametrisations (Grunbaum, 1998). Moreover, incorporating biological-physical in-
teractions by accounting for the impact of temporal and spatial environmental variability on
population dynamics and thus reducing the number of model parameters is more straightfor-
ward in ADR equations (e.g., Grunbaum, 1998; Flierl et al., 1999) than in classical, spatially
aggregated stock assessment models operating in large management regions (Punt, 2017). In
exchange for their parsimony, spatially explicit dynamic models applied to full-life-cycle fish
population dynamics have higher dimensionality. The latter represents the cost for being
more realistic models.

Being continuous, ADR equations allow implementation of quantitative methods to esti-
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mate model parameters from available observations (Sibert et al., 1999; Senina et al., 2008).
Nevertheless, before applying these models to solve fishery management problems, we need
to be confident in the reliability of model predictions. Hence, we need to work on developing
the dynamic model, providing adequate descriptions of observed phenomena, and improving
the model structure, allowing quantitative dynamics, under the tight coupling of the model
predictions to observations.

The SEAPODYM modelling approach for top predator population dynamics has greatly
benefited from the work undertaken by Sibert et al. (1999) on implementation of continuous
ADR equations to describe movement dynamics and estimate movement and mortality rates
of tagged skipjack and yellowfin tunas (see also Sibert and Fournier, 1994). SEAPODYM
has been continuously evolving since the initial development of a single-cohort tuna popula-
tion model presented in Bertignac et al. (1998). A few years later Lehodey (2001) proposed
a coupled predator—prey model with the model for tuna forage. In the study of Lehodey
et al. (2003), discrete-type age structured equations were added to the numerical solver of
continuous ADR equations. The first fully parametrised and fully operational SEAPODYM
model was presented in Lehodey et al. (2008), and with an added parameter estimation
method in Senina et al. (2008). The general scheme of the model and parameter estimation
approach is shown in Figure 1.2.

The current model version is based on a continuous ADR equation with an ageing term,
and is fully described in Senina et al. (2020a,b). The SEAPODYM modelling framework now
includes several models, and allows, besides the full population dynamics model, computing
and estimating the parameters of spawning and feeding habitats, modelling movement dy-
namics of tagged cohorts, and integrating tagging data to inform movement rates of modelled
fish at different ages/sizes. The model can be now be parametrised through integration of
industrial fisheries data and conventional as well as archival tagging data, and optimization
is carried out using the maximum likelihood estimation approach. The implementation of
adjoint code allows an exact, analytical evaluation of the likelihood gradient to be obtained.
The approach to select the ‘best parameter estimate’ is based on a series of computer exper-
iments in order to i) determine model sensitivity with respect to variable parameters and,
hence, investigate their observability; ii) estimate observable parameters and their errors; iii)
justify the reliability of found solutions; iv) validate the parametrisation with independent
information; and v) compute the errors of parameter estimates.

The continuous improvements in the model structure, the implementation of the numeri-
cal model coupled with the quantitative methods of parameter estimation allowed numerous
model applications to different pelagic species such as Pacific skipjack tuna (Lehodey et
al., 2013; Senina et al., 2020b), Pacific yellowfin tuna (Senina et al., 2015), Pacific bigeye
tuna (Senina et al., 2021), Atlantic albacore tuna (Dragon et al., 2015; Senina et al., 2020a),
South Pacific albacore tuna (Lehodey et al., 2015; Senina et al., 2020a), Chilean jack mack-
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Figure 1.2: General scheme of the model with optimization approach (from Senina et al.,

2008).
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erel (Dragon et al., 2017) and Pacific swordfish (Abecassis et al., 2013). Informing model
parameters through integration of various types of data for different migratory species thus
showed that such models have the capacity to provide valid quantitative predictions of the
species population dynamics, and can be used in the development of management strategies
(Sibert et al., 2012) and in investigating the climate change impacts (Lehodey et al., 2010,
2013, 2015; Bell et al., 2021). All examples of applications and related projects can be found
in the dedicated websites (www.seapodym.eu; www.spc.int/ofp/seapodym).

This reference manual for the SEAPODYM-MASS model is constructed as follows. Chap-
ter 1, “The fish population dynamics model' is devoted to the mathematical model and
the dynamic processes it describes. It also details the underlying biological mechanisms be-
hind the definitions of spawning and feeding habitats. Chapter 2, “Discretisation and
numerical solution" describes the discretisation of model dimensions, the numerical model
that is the approximation of the continuous ADR equations with an ageing term, its inte-
gration with alternating-direction implicit (ADI) method and the general algorithm imple-
mentation within the main time and age loop. Chapter 3, “Configurations and model
runs' provides detailed documentation on how to run the model simulation with predefined
configurations. The input and output data files are also described in this chapter. Chapter
4, “Model parametrisation" reviews the methods to build up quantitative models. This
final chapter is intended for advanced use of the model, providing the methods for the model
application to the new species.
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Chapter 1

The fish population dynamics model

1.1 Underlying equations

The general model of SEAPODYM is based on a classical advection—diffusion-reaction
(ADR) equation. Let N(a,t,x) be the density of the fish population at age a € |0,al,
at time ¢ € [to, ta] and at position x = (z,y) € Q € R? Herein for brevity we omit nota-
tions of age, time and space, and use the gradient operator V = (9, d,)T and the divergence
operator of a two-dimensional vector field div(v) = d,u + d,v. The continuous version of
SEAPODYM describing spatial, temporal and age dynamics of fish population density N
is represented by the system of ADR equations with an ageing term, and the initial and
Neumann boundary conditions:

0N + 0,N = —div(vN) + V(DVN) — MN + S (1.1)

N(a,x,ty) = No(a,x) (1.2)

n-v =n-VN =0 (1.3)
x€0Q x€o0)

where

v = v, + vy is the velocity field including velocity of ocean currents v, and directed
movement velocities of population density vy (see egs. 1.25 and 1.28);

D is the diffusivity (see eq. 1.30);

M = my + mp is the total mortality that is the sum of natural my and fishing mpg
mortality rates (see egs. 1.40 and 1.42);

S = N(0,t,x) gives the new recruited biomass after spawning, i.e. at a = 0. Note
S =0 for a > 0 (see egs. 1.13 and 1.2.3);

23
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0 is the boundary of the two-dimensional domain 0 € R? and n is the unit normal
vector to 0f);

No(a,x) in (eq. 1.2) is the initial value of the state vector, i.e. the population density
for all ages a € [0,a] in the two-dimensional space, where @ is the maximal age of
individuals in a given population; and

Neumann zero-flux boundary conditions (eq. 1.3) imply impenetrability of domain
boundaries 0f2.

In addition to age dynamics, the model (1.1-1.3) describes the dynamics of four life
stages. These are larvae, small juveniles, immature (young) and mature (adult) fish (Table
1.1). The reasoning behind considering these life stages is their different movement dynamics.
Larvae drift in the surface where they are passively transported by ocean currents; hence
their survival depends on the local environmental conditions in the sites to which they
are transported. Small juveniles (for tunas, up to 3 months of age, for other fish species,
age classes which cannot be considered autonomous in terms of movements) occupy the
epipelagic layer, through which they start performing diel migrations to avoid predation.
However, their large-scale horizontal movements are still passive and depend on currents
in this layer. In the next life stage of young immature fish, in addition to being passively
transported by ocean currents, fish can undertake directed movements in search of food. At
the fourth life stage, mature adults, the fish have two drivers of movement — survival, that
is, searching for food, and reproduction, that is, moving to habitats that provide optimal
conditions for spawning and for survival of larvae. Note that dynamics of all life stages are
modelled by the general model (egs. 1.1-1.3); however, the rates of reproduction, mortality
and movement are considered differently.

Table 1.1: Considered life stages of a modelled population. The column ‘driver’ specifies the
biological driver for active movement (both directed and non-directional).

Life stage \ Ages, a \ Layer \ movement \ Driver

Larvae a=20 surface passive drift none

Small juveniles | 0 < a < ay epipelagic | passive drift none

Young adults a;y <a<ay |all passive and active | survival

Mature adults | ay <a <a | all passive and active | survival, reproduction

1.2 Dynamic processes

SEAPODYM follows a biophysical approach explicitly describing the spatio-temporal dy-
namics of a species population density arising from animal behaviour as a response to envi-
ronment. The environment is described by physical, biogeochemical and biological variables
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derived from external models. These variables are temperature, currents, dissolved oxy-
gen, primary production, euphotic depth and density of micronektonic organisms that are
the prey of tunas and other large predators (see section 1.2.1). As seen from the model
(egs. 1.1-1.3), the fish population dynamics in SEAPODYM are resolved in four dimensions:
two-dimensional space, time and age. The vertical dimension is simplified into three pelagic
layers.

Two main drivers of animal behaviour, reproduction and survival, are considered. To
integrate them into the model, two types of habitat indices, spawning H and feeding H,, are
defined. Definitions of species habitats are based on empirical evidence. A thermal habitat
of tuna species is derived from an individual heat budget model. The feeding habitat is
computed according to the accessibility of tuna predator cohorts to the different vertically
migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning
habitat is based on temperature and density of predators and food for larvae in the spawning
sites. These habitats, as well as the movements, reproduction and survival, are driven by a
biophysical environment predicted from a coupled ocean physical-biogeochemical model.

1.2.1 Species environment

The species environment is described by the spatio-temporal fields of the following vari-
ables: 1) physical — temperature and ocean currents, ii) biochemical — dissolved oxygen
concentration, primary production and euphotic depth, and iii) biological — the food re-
source for the species (see Table 1.2). The temperature, dissolved oxygen concentration, and
zonal /meridional currents are the three-dimensional outputs of coupled ocean general circu-
lation (OGCM) and biogeochemical (BGCH) models. The euphotic depth and integrated
primary production are the two-dimensional outputs of either BGCH models or observation-
based empirical models. Three pelagic layers represent a simplified vertical dimension of
SEAPODYM: the surface epipelagic layer, the subsurface mesopelagic layer and the deep
mesopelagic layer. The current definition of these layers is based on the euphotic depth and
originates from the definition of six functional groups of micronekton (Figure 1.1).

First, all three-dimensional environmental variables are averaged over three pelagic layers
(Figure 1.2). These integrated variables are then used to force the SEAPODYM-LMTL
(Lower and Mid-Trophic Level) model. The SEAPODYM-LMTL model relies on primary
production, temperature and ocean currents to simulate the biomass of six functional groups
of micronekton, that is, mid-trophic-level prey organisms of tunas, residing or migrating
through three pelagic layers within the upper 1000 m of the water column. The depth z of
pelagic layers is linked to the depth of euphotic layer z. as follows:

z = (1.5z.,4.52z., min(10z., 1000)). (1.4)
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Table 1.2: Forcing variables used in SEAPODYM applications. The column Model refers
to the external model type.

Model Variables Description

Physical forcing
Ocean reanalysis by general circulation model with atmospheric
forcing based on meteorological observations.
Biogeochemical forcing
Primary production, dissolved oxygen and euphotic depth, either
BGCH P, O, z, predicted by BGCH model coupled to OGCM, or by empirical
model (e.g. VGPM) derived from satellite data.
Biological forcing
Six micronekton groups and one lower-trophic level group (zoo-
LMTL A plankton) predicted by SEAPODYM-LMTL model with the
above forcing, excluding dissolved oxygen.

Epipelagic
Upper-mesopelagic

I Lower-mesopelagic

OGCM T, u,v

(Fll) (FZI) FZZ ng Fgl) (Eg;g) Continuous Model

Legend: - Sunrise/Sunset | | Night

Figure 1.1: The definition of micronekton functional groups by their vertical diel behaviour.

The definition (1.4) of pelagic layers in SEAPODYM is derived from the diurnal patterns
in vertical distributions of micronektonic species shown by acoustic observations (see Lehodey
et al. (2015) for further details on vertical layer definition and the SEAPODYM-LMTL
model). The spatio-temporal fields of modelled micronekton together with the physical and
biochemical variables are used to describe the preferred habitats of the large pelagics for
foraging and spawning and to predict their temporal and spatial dynamics.
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INTERIM temperature Jan 1979 INTERIM temperature Jan 1979 Mean temperature in pelagic layers Jan 1979 30

Figure 1.2: The integration of three-dimensional environmental variables. Here three-
dimensional temperature (left) is integrated over three pelagic layers (middle) and divided
by each layer’s thickness to provide the two-dimensional mean fields of each forcing variable.

Let us denote var,(t,x), the forcing variable averaged over vertical layer z, where var
can be either water temperature 7', dissolved oxygen O, or ocean currents u and v. As
mentioned above, the primary production P = P(t¢,x) is integrated through the whole water
column (knowing that most of it is concentrated in the euphotic layer). Vertically inte-
grated primary production is given in units of mmol C m~2d~'. The density of micronekton
F.,.., = F(t,x, 24, z,) refers to the modelled density of small nektonic organisms (represent-
ing prey of modelled predatory species) aggregated into a functional group by their vertical
behaviour, that is, all inhabiting layer z; and z, during the day and night respectively,
as shown in Figure 1.1. For brevity, hereafter we omit dimensional notations (time, 2D
space) for SEAPODYM forcing variables once they are defined. Also, for convenience let us
represent all prey functional groups as a diagonal matrix of dimension dim(z) x dim(z),

Fi. 0 0
F = Fgl F22 0 (15)
F31 F32 F33

where the rows and columns show the composition of vertical layers during the day and night
respectively.

1.2.2 Spawning habitat

The spawning habitat describes the ensemble of environmental conditions that are favourable
for spawning and optimal for larvae survival. In other words, the spawning habitat describes
the ensemble of conditions that constrain larval production and mortality, and affect the
subsequent recruitment. This habitat then represents the following four mechanisms:

« changes in the spatial extent of the spawning habitat with temperature;
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« coincidence of spawning with presence or absence of food for larvae (micro-zooplankton,
approximated by primary production), that is, the match/mismatch mechanism pro-
posed by Cushing (1975);

« coincidence of spawning with presence or absence of predators of larvae (that are the
micronektonic organisms, i.e., the prey of adults); and

 redistribution of larvae by the oceanic circulation, which can retain larvae in favourable
areas with lower natural mortality, or conversely move the larvae to unfavourable zones
where the natural mortality will be higher.

The favourability of tuna habitat in terms of spawning success and larvae survival depends
on three oceanic variables — sea surface temperature (SST(t,x)), prey of larvae (A(¢,x), can
be either plankton density or primary production as a proxy), and density of predators of
larvae present in the surface layer, which are also the food for spawners (F}(t,x), surface
micronekton, see below).

The index of spawning habitat, H(t,x) € (0,1), is defined as the following product (for
brevity, we omit here the dimensional notations of environmental variables, micronekton
density and habitats):

Hs:fl(SSTvT*aa> XfQ(Aaoé) Xf3<F17aF76F)> (16)

requiring that all three environmental conditions are optimal for the species for the habitat
index to be maximal. These three functions (see Figure 1.3) are defined between 0 and 1 as
follows. The thermal conditions are described by

(ssT—1*)?
f1 =e 202 3 (17)
a Gaussian function with two parameters, 7™ and o, being the optimal temperature and
thermal tolerance interval of larvae respectively. The function f5 is the analogue of the
Holling type III functional response function with n = 2:

An
where handling time h = 1 (to allow the function scaling within [0, 1) interval) and o > 0 the

inverse of searching efficiency defining the shape of functional response to the prey densities
(no response with o = 0, mostly hyperbolic within the effective range of prey densities as

(1.8)

the inflection point A = \/g gets too close to 0 with small o and marked logistic relationship
with large enough «). Note that when using primary production P as a proxy for the density
of phyto- and zooplankton, which are the actual prey of larvae, we should convert primary
production to the wet weight of plankton. So if ocean primary production P is given in
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mmol-C-m~2, we use the energy transfer constant F = 0.354 to compute the part of P that
will be transferred to lower-trophic level groups (see Lehodey et al., 2015) and the conversion
factor ¢ = 0.1415 gWW-mmol~! C (Iverson, 1990), so that A = cEPt, the t being the unit
time of production P, provides the wet weight of plankton species in the units of g-m=2.

The third function, f3, is the log-normal distribution function rescaled on (0, 1) allowing
selection of the optimal window of micronekton densities Fj in the surface layer:

1 _(logFl—aF)2

3 2 (1.9)

= F160.5/3%,—0¢F€
where parameters ap and fp are the mean and standard deviation of log-normal distribution
function, and the surface micronekton densities Fy (1 is the layer index) is computed as
follows:

Fi=7F.6+(1—-71)F;1" (1.10)

with § = (1,1,1)T and 7 is the proportion of light hours in a 24-hour cycle. In other
words, F} is the density of all micronektonic organisms present in the epipelagic layer during
the day, Fy., and during the night, F.1", either residing or migrating here from deeper
layers. However, larvae predation is likely maximal during daytime and twilight periods, and
therefore only two twilight hours are considered in the second term; hence the formula 1.10
simplifies to

Fy=7F.6 +F,"6/12 (1.11)

1.2.3 Reproduction

Successful larval recruitment is linked to both the spawning stock density and the conditions
of larvae survival. Hence, the number of recruited larvae N(0,¢,x) is the product of H,
(eq. 1.6) and the stock-recruitment function of density of mature adults.

The total amount of mature adults in each position of two-dimensional space, N (t,x), is
computed using the continuous maturity function g = u(a) obtained from external studies
(see section 1.2.4) and the density of adult tuna predicted by the model (for brevity, hereafter
we leave notation of age dimension and deliberately omit (time, 2D space) notations for
SEAPODYM state variables):

N = /aa w(a)N(a)da (1.12)

where a; is the last age in a small juvenile stage and a is the maximal age of individuals in
the population. The number of new recruits at zero age, N(0,¢,x), that is, the term S in
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Figure 1.3: Functions used in the definition of spawning habitat and reproduction: (a)
Beverton—Holt stock-recruitment function, (b)thermal function f;, (¢) prey function f, and
(d) predator function f3, based on parameters estimated for bigeye tuna (Senina et al.,
2020b).

eq. 1.1, is then the product of the Beverton-Holt stock-recruitment function (Beverton and
Holt, 1957) and the spawning habitat index:

A

N
N(0) = H,— (1.13)
1+bN

where r is the reproduction rate and b is a parameter defining the strength of the stock—
recruitment relationship between the density of spawners, N (in Nb - km~2, Nb - number
of individuals), and those of larvae, N(0), survived and recruited to the first age class
(Figure 1.3). This relationship is suitable for opportunistic spawners, for which the spawning
success depends on the local spawning habitat index and the adult biomass.
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1.2.4 Growth and maturity

SEAPODYM uses the species’ biological parameters estimated in external studies, which are
usually obtained from fitting the classical Bertalanffy (1938) growth equation either to data
derived either from conventional tagging or from otolith increments. This equation assumes
that as the organism ages, its length increases to an asymptote £, which is the greatest
possible length that the organism can attain under the given conditions:

U(a) = Ly (1 — el7Ham00)) (1.14)

where £(a) is length of a species at age a, constant ., is asymptotic length corresponding to
the known maximum length of the oldest fish, k£ is growth rate, and ag is age ‘zero’ length.
In SEAPODYM, the relationships length-at-age and its inverse are used in the definitions
of habitats, the integration of length frequency and tagging data.

The weight of organisms relates to length-at-age following the general allometric rela-
tionship:

w(a) = ql(a)? (1.15)
with the power constant p estimated by fisheries biologists from weight and length measure-
ments. For many fish and tuna species, the constant p ~ 3, meaning that the coefficient ¢
is the fraction of the volume of a cube of side ¢ that the organism occupies (see Beverton
and Holt, 1957). The species’ weight-at-age function has the asymmetrical sigmoid form
and is used in SEAPODYM to compute the species’ thermal inertia (section 1.2.5) and in
predicting catch statistics (section 4.1.1).

Maturity-at-age is another external (fixed) parameter in SEAPODYM. Two ways of defin-
ing maturity in the model are proposed:

(i) ‘knife-edge’ maturity, occurring from immature to the mature state at age when 50% of
individuals are mature, asg, so that only adults older than age a5 (equivalent to ay 1 in
Table 1.1) are considered capable of reproducing. This means that in the equation 1.12
of spawning stock biomass, maturity p(a) = 0 for all a < a5y and p(a) = 1, otherwise;

(ii) the continuous maturity function p(a), giving the estimation of maturity at age ex-
pressed in values between 0 and 1 equal to the portion of mature adults at a given age
a. In this case the continuous function is used in eq. 1.12.

1.2.5 Feeding habitat and movement rates

The quality of feeding habitat controls the directed component of tuna density movement.
We define the index of feeding habitat as the micronekton density that is accessible
to the predator. This index is therefore not null when the predators and prey share the
same habitats and the environmental conditions in the prey’s habitat can be tolerated by
the predator.
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a) skipjack tuna b) bigeye tuna

o . o . .

‘_- — agej J:. ‘_-- — QQ$1 J,?\
- age9 . - Aage? N
-+ oldest: : -+ oldest :

@© | | o | Lot

=] o

© | © |

o o

| g

o o

(o] (o]

o | o |

o o

o : X o —/]//——— "ty
10 15 20 25 30 10 15 20 25 30

Temperature Temperature

Figure 1.4: Changes in thermal preferences function f; linked to species’ growth: the op-
timal temperature decreases with increased body size, while standard deviation increases
with increased body weight. Two panels depict examples of typical parametrisation for (a)
skipjack and (b) bigeye tuna.

Accessibility

The accessibility of a species to a pelagic layer depends on environmental conditions and the
species’ preferences and/or tolerances related to these conditions, which vary with age (size).
In SEAPODYM, we consider species’ thermal preferences and oxygen demands as two main
factors stipulating species’ accessibility to a given depth and position in two-dimensional
space, O(a, t,x, z). For brevity, hereafter we leave notation of age dimension and deliberately
omit (time, space) notations for SEAPODYM variables depending on environment once they
are defined. Thus, accessibility ©(a) to a given vertical layer is the product of the two
functions — temperature and oxygen in the corresponding layer:

O(a) = fu(T;T"(a),0(a)) x f5(O2 O3,7) (1.16)

where f; is the Gaussian function selecting the interval of preferred temperatures around
the optimal value 7*(a) and the width of the interval depending on o(a) (Figure 1.4):

( (T - T*(a»?)
fi=e 20%(a) (1.17)

It is known that species have different tolerances to oxygen levels. The lowering of oxygen
concentration can quickly make the habitat unfavourable for tunas, expressed in behavioural
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Figure 1.5: Dependence of feeding habitat on oxygen level. Parameters for skipjack and
bigeye tunas were obtained with help of MLE method using catch, catch at size and tagging
data in the likelihood and objectively analysed oxygen climatologies from World Ocean Atlas
(Senina et al., 2018, 2021).

responses such as increased speeds (see, e.g. Brill, 1994). The effect of oxygen on the habitat
quality can be described by a sigmoid function, f5, stipulating the minimal level of dissolved
oxygen necessary for the modelled species (Figure 1.5), with the response to near-critical
values of oxygen defined by the parameter ~:

1

5= 1+ i 7(02—05)

(1.18)

Age dependence

The use of a Gaussian distribution with a preferred temperature mean linked to the fish size-
dependent body temperature at steady state, and with a standard error of the distribution
linked to the thermal inertia of the fish was formulated in Lehodey et al. (2003) based on
earlier works on heat budget models (Holland et al., 1992; Brill, 1994; Maury, 2005). It is
assumed that for a given species there is an optimal intrinsic temperature (T*) that remains
constant whatever the age/size, and that this temperature is a target temperature for any
individual of the species (e.g., due to genetic and physiological adaptation during species
evolution). As demonstrated by a tuna heat budget model (Holland et al., 1992), when
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becoming larger with age, the fish will have to search for a colder habitat to compensate
for their increasing body temperature at steady state. But they will also have a larger
temperature range due to their thermal inertia increasing with size £(a). Therefore we define
the population size-dependent thermal preference with optimal temperature decreasing
with size and tolerance interval linearly increasing with weight (Figures 1.4, 1.6).
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Figure 1.6: Habitat temperature computed as a weighted spatio-temporal mean, with weights
being the population density N (a,t,x). Temperature profiles were obtained by means of pa-
rameter estimation for skipjack tuna using different datasets and experimental configurations
(see Senina et al., 2016, for more details).

Let each age a have corresponding fork-length ¢(a) (eq. 1.14) and weight w(a) (eq. 1.15).
Thermal preference implies that the maximal average temperature occurs at age 0, that
is, spawning (Figure 1.6). We assume that the species intrinsic temperature 7% = T is
equivalent to the temperature preferred by the individuals at a = 0. Then that thermal
preference component of the accessibility function has parameters that are functions of age
(through dependence on size) as follows:

T(a) = Ty — (Tp — Tm)< Ha) )bT, (1.19)

w(a)
w(A*)’

o(a) = oo+ (0 — 00) (1.20)
where Tj, T}, are the model parameters, denoting temperatures preferred by fish at age 0
and at maximal age (A™), and og, 0, are standard deviations in Gaussian thermal functions
(eq. 1.17) for youngest and oldest cohort respectively. The parameter b € (1,p) allows the
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linear to approximately cubic (p & 3 in eq. 1.15) relationship between preferred temperature
and fish size, with b = 1 equivalent to a linear decrease with species length at age, ¢(a),
and with b = p equivalent to a linear decrease with species weight at age, w(a). Note that,
according to the heat budget model outcomes, we may assume that oy = ¢ and Ty = T™
in the spawning habitat definition (eq. 1.7), that is, that the species’ preferred range and
the optimal intrinsic temperature are the same as the range and the optimal temperature at
larval stage. However, due to the use of integrated temperature fields (Fig 1.2), the estimated
optimal temperature for spawning might not correspond to the actual temperature at age
‘0’ that the fish are seeking. For this reason, these parameters may be considered separately.

Feeding habitat index

The index of feeding habitat H, € (0,1) is a linear combination of the abundance of the six
functional groups of micronekton inhabiting three pelagic layers (eq. 1.5), with the coeffi-
cients being the accessibilities to the corresponding pelagic layer (see Table 3.7). However,
the biomass levels of micronekton should be considered with caution due to uncertainty asso-
ciated with the calibration of energy transfer coefficients, which control the total abundance
of each functional group (Delpech et al., 2020), and the lack of information to derive the
vertical distribution of the biomass from acoustic data (Lehodey et al., 2015). Therefore,
one parameter, F;;, per functional group has been added to account for an uncertainty on
the absolute value of micronekton biomass density as well as to include the possible effect of
food preference of the predator species. Then the matrix F can be rewritten as:

Ei - Fih 0 0
F = E21 . F21 E22 . F22 0 . (121)
Esi - F31 Eso-Fzy B3y Fi3

Finally, knowing the accessibility of the predator at age a to each vertical layer z with
prey species, O(a, z), which is the row vector of size 3 (number of vertical layers) at each ¢
and position x , the feeding habitat at age, at each spatial position and model time step can
be written as follows:

H,(a) = ©(a) x (TF5 + (1 - 7)FT5), (1.22)

where F is the matrix (1.21),d = (1,1,1)T, and the weights 7 denote the duration (portion) of
daytime to account only for the micronekton biomass when it is present in the layer accessible
by the predator. Note that the vector product in eq 1.22, H,(a,t,x), is a scalar field of a
unitless quantity. The coefficients E, besides modifying the vertical structure of micronekton
groups (although preserving their original two-dimensional distributions predicted by the
SEAPODYM-LMTL model), have an important physical meaning, that is the inverse of the
maximal (asymptotic) value of the density of a given micronekton group, in order to consider
the feeding habitat attractive to the predator. The latter theoretically provides that each



36 SEAPODYM-MASS Reference Manual

term of the linear combination (1.22) is limited within the (0, 1) interval. Besides, due to
the Gaussian form of the thermal accessibility function and the definition of vertical layers,
two layers cannot be favourable to a species at a given age and point in space and time. So,
in practice the habitat index is either the sum of nearly zero contributions of micronekton
groups if the conditions in neither layer are favourable, or the selection of micronekton
biomass (scaled) in the preferred layer. To ensure in practice that the condition on the
resulting index H, < 1 is met everywhere and for all age classes, additional scaling using a
continuous rotated hyperbola function is applied throughout the model dimensions to reset
to 1 all H, > 1 values obtained from the formula (1.22). Since the calibration of parameters
E is done by means of constrained function minimisation (Chapter 4), the final habitat is
nudged to vary between 0 and 1, and the habitat gradient to provide local cues for predator
movements (see section Active directed movement below).

Passive movement

We denote v,(t,x) the mean horizontal ocean current velocity at time ¢ and position x,
averaged over vertical layer z. The model simulates passive transport of tuna larvae and
small juveniles. Densities of these life stages are transported by oceanic currents in the
surface (epipelagic) layer, so the total velocity in 1.1, v = vy for ages [0, a;]. Note that for
most tuna species the movement dynamics at early life stages is changing rapidly with fish
growth. Thus, tuna larvae occupy the upper 50 m of water column (Llopiz et al., 2010), while
small juveniles are capable of diel migrations through the euphotic layer. Hence it is more
realistic to use the near-surface currents to describe the transport of fish at the larval stage
and the currents integrated over the epipelagic layer to model advection of small juveniles.
More accurate representation of vertical distribution of these early life stages will allow a
more realistic description of their horizontal drift.

Whatever the size of the fish, the horizontal oceanic currents influence the movement of
fish living in the water column. To incorporate the drift that the fish may experience while
performing vertical diel migrations through layers z, we calculated the integrated current
velocity through the water column, accounting for the time fish spend in each layer during
the day and night. This time can be assessed as relative feeding habitat index, that is, for
each t and x we first compute the habitat component in each layer as:

H,(a,z) =0O(a,z) (TF..0 + (1 — 7)F.,0) (1.23)

where F is matrix (1.21). Then the time spent in each layer can be approximated by the rel-
ative contribution of the accessible micronekton density to the total accessible micronekton:

H,(a,z)

z2=2

€+ Z H,(a,z)

z2=0

U (a,z) = (1.24)
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where the small constant € is added to avoid division by zero. Then the averaged velocity,
weighted by the time spent in the layer is computed as:

Ve(a) = Zﬁ(a,z)vz, (1.25)

with ¥(a) and the total velocity in (1.1) is

. < . .
ve(a) = { Vo if a <a; larvae and juveniles (1.26)

| Ve(a) if a>ay adults

Active directed movement

The movement dynamics in SEAPODYM are governed by the advection—diffusion terms in
model (1.1). Thus, directed movements are modelled with the advection component of the
model equation, while random (non-directional) dispersal is described by diffusion. Similar
to Lagrangian models of individual behaviour, the movements of population density in a
Eulerian approach are stipulated by local conditions only. Repeated responses to local cues
at the individual level result in movements towards more favourable parts of the environment.
These processes are formulated within Eulerian models by allowing the velocity field of
population density to be proportional to the gradient of the movement stimuli. Hence, the
velocity of directed movements of fish density, v, is proportional to the gradient of the vector
field of movement stimuli I:

v =xVI (1.27)

with the coefficient of proportionality, the so-called taxis coefficient, .

For any type of movements, the displacement per unit of time is directly dependent on the
size of the individuals. Since the SEAPODYM-MASS model resolves population dynamics
in age, we can easily formulate the movement rates at age. The movement stimuli are the
feeding resource’s densities becoming increasingly accessible to fish as they grow, which is
described by the feeding habitat index (1.22). However, it is also known that the maximal
sustainable speed of an individual is linked to its size through physiological mechanisms and
not only because of variable environment (see e.g., Cayre, 1991; Brill, 1994; Nihira, 1996;
Turchin, 1998). To account for this we introduce a link between the density velocity field
and the maximal sustainable speed at age (size) by making the coefficient of proportionality
in the classical approach (1.27) a function of age, x(a). So the directed component of density
velocity field at time ¢ and in position x is proportional to the gradient of feeding habitat as
follows:

OH, aHa>T

vy(a) = x(a) ( o Oy (1.28)
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where x(a) X Vinar.a, with the maximal sustainable speed, V,4z.4, being the maximal speed
of a population density, hence the mean speed of a large number of individuals. It is linked
to the mean individual size at age through the allometric relationship V420 = V4, with
parameters V' expressed in body length per second (BL/s) and the power constant A < 1
allowing a decrease of the speeds in BL - s~! with increasing size. Note, to ensure that the
resulting speeds from (1.28) do not exceed the V444, it is necessary that the norm of the
velocity ||[vy(a)|| = Vinaz,a at highest habitat gradients. Thus, denoting g, = max(||VH,|),

! we may formulate the taxis coefficient as

x(a) = g,'V{; (1.29)

with parameters V and A the control parameters to be estimated with the help of the
MLE approach (see Figure 1.7), for example, informing them from movement data, such as
conventional tagging (more details about the method in Chapter Moodel parametrisation,
section 4.1.3).

Active random movement

The diffusion term in model (1.1) describes random non-directional movements of a large
number of individuals. Such movements are made by individuals when there is no preferred
direction for movement, or when the local conditions became unfavourable (e.g., no more
food). Besides, we can expect that individuals stay longer in the presence of favourable
conditions (hence low diffusion), but will want to escape quickly from unfavourable habitats
(high diffusion). Diffusion rate, or diffusivity, D in (1.1), is therefore also linked to the
feeding habitat index H,, allowing an increase of non-directional movement velocities in a
very poor habitat and minimising random displacements within a favourable habitat. Such
a link is formulated as follows for each age a, at time ¢ and position x:

D(a) = 0Dy (1 — cHP(a)) (1.30)

where ¢ is a constant parameter, the coefficient Dy is the mean theoretical diffusion rate
in an unfavourable (zero) habitat, parameter ¢ controls the reduction of Dy with increasing
habitat index; the constant p = 3 is chosen to limit the reduction of Dy in the lowest habitat
indices H, < 0.5, making diffusivity less sensitive (always highest) in the poor quality habitat
and rapidly increasing in the favourable habitat.

The coefficient Dy is derived from the theoretical formula for two-dimensional mean
square displacement r? = 4Dt. Thus, if we make the assumption, although unrealistic, that
at zero habitat all individuals move at their maximal speed V without turning, that is,

INote that in the current version of code a simplified formula is implemented for a special case when
Az = Ay.
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n

mean square displacement at the time interval AT can be expressed as r* = £ 3> (V;AT)? =
i=1

V2AT?, then we may compute the maximal theoretical diffusivity as

_ VEAT

DO 4 )

(1.31)
where the average speed of fish is assumed to be V =1 BL-s~! for any a. Since this formula
obviously overestimates the diffusivity due to the unrealistic assumption above, we add the
proportionality constant o, the meaning of which is the reduction of the maximal theoretical
diffusivity (1.31). Note that (1.31) models the non-linear increase of diffusivity with age (see
Figure 1.7).

Seasonal spawning migrations

One of the hypotheses of how the search of spawning grounds occurs assumes that adult
tuna tend to direct their movements to find a place with environmental conditions like those
occurring during their birth (see e.g., Cury, 1994). Another hypothesis, which is used in
SEAPODYM modelling, implies that the change in daylight triggers the switch from foraging
to spawning behaviour (Lehodey et al., 2008). These two hypotheses can be implemented as
follows. At every time ¢ and latitude y, a continuous seasonal switch function (¢, y) enables
rapid switching between two habitats depending on the function of daylight, so that the
habitat of mature adults can be computed as a linear combination of feeding and spawning
habitats:

H=cH, + (1 —¢)H, (1.32)

where the switch ¢(t,y) is a step function defined as follows:

s(t,y) = (1 + 049*95)71 (1.33)

with constant « defining the abruptness of the switch, o(t,y) is a function of a day length
and g, is the critical value that triggers the switch.

However, the use of the switch function (1.33) and the linear combination of feeding
and spawning habitats (1.32) may lead to two problems. First, the predefined seasonality
of a daylight function does not necessarily align with the timing of albacore migrations to
the spawning grounds. Second, when feeding and spawning habitats are characterised by
very different oceanographic conditions, which is often the case for the temperate species
(e.g. albacore, bluefin tuna), these two habitats, spawning and feeding, do not overlap
geographically and hence there are no local cues that may stimulate long-distance migrations
to spawning grounds.
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Figure 1.7: Mean movement rates estimated for skipjack tuna using different datasets and
experimental configurations: (top) directed velocity of population density in body length
per second units at age; (bottom) average diffusion rates at age. The movement rates were
averaged over space and time, with weights being spatio-temporal distributions of density
N(a,t,x) (see Senina et al., 2016, for more details).
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Day/night ratios in Northern hemisphere
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Figure 1.8: Illustration of seasonal switch functions: (top) day-night ratio ¢ for northern
hemisphere; (bottom) the dates of seasonal switch eq. 1.33 between feeding and spawning
migrations at different latitudes. The dotted vertical lines denote the mid-date, ¢, of the
spawning season. The parameter p, defines the latitude, below which the seasonal switch
does not occur.
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The flexible timing of the spawning season is enabled by adding a time lag to the day
tO of summer solstice:

5t =tO — 1, (1.34)

and computing the day length at day ¢+ 6¢. So, for the day length (¢ +6t,y), the £ becomes
the mid-date of the spawning season, also called a season peak. In this case the day length is
used only as a convenient periodic function providing the seasonality at every latitude. Note
that the choice of mathematical form of the function of day length, g, should be done within
the MLE approach given that parameters defining the moment of the switch g, and the
mid-date of the spawning season ¢ can be effectively estimated from the data (Figure 1.9).
For example, we can use the function of day length, the gradient of the day length, or the
day-night ratio o = A\/(24 — ).

Timing of spawning migrations of albacore tuna
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Figure 1.9: Same as in figure 1.8, but including the variations of standard deviation of the
Gaussian thermal function (dashed curve, right y-axis), enabling the local cues (expressed
through non-zero gradients of seasonal habitat) for mature adult movements. Parameters of
seasonal switch estimated based on fisheries data for south Pacific albacore (Senina et al.,
2020a).

Local gradients To enable the local cues and hence the non-zero velocities for tunas
directed towards the spawning grounds and back to the feeding grounds, the following ap-
proach has been implemented. Based on the tuna sensitivity to water temperature and the
hypothesis that adult tunas follow warmer temperatures while moving towards maturation
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and spawning areas (Le Gall, 1949), we suggest using thermal gradients as the driver of mi-
grations. In SEAPODYM, the temperature is the common environmental variable to which
tunas respond within both feeding and spawning habitats. The thermal preferences at all
ages a € (0, A™) are described by Gaussian-type functions with two parameters, T, and o,
being the preferred optimum and the temperature tolerance range respectively (1.17). To
link seasonal movements to thermal gradients, we assume that the range of preferred tem-
peratures in the mature tuna’s habitat varies with time. It is maximal at the beginning of
migrations, that is, at the moment of the switch, and decreases to the range of temperatures
characteristic for the spawning at the seasonal peak. One way to describe this variable o, 4(t)
during the spawning season is to relate it linearly to the function of day length o(t,y,) at a
given (fixed to the northernmost) latitude y,,, namely to its deviation dp from its value at

A

season peak o((t),yn):

00
00maz
where o is the standard deviation providing a range of preferred temperatures in spawn-
ing habitat; g, = Ty" — T,” is the difference between optimal spawning temperatures and
preferred temperatures of tunas aged a; and §0,,q, is the maximum deviation of the chosen
day length functions. Note that one standard deviation o, being the difference between
H, and H, thermal optima provides the highest gradients of the Gaussian thermal function.
The seasonality of the spawning migrations and variable thermal range o, ; are illustrated
in Figure 1.9. Note that the variability of o, is effective only within a spawning season
occurring once per year in each hemisphere.

(1.35)

Oq,s = 00 + (OTa - UO)

1.2.6 Natural mortality

The natural mortality of fish includes two mechanisms — population decay due to the pre-
dation process and population abundance decrease due to senescence of individuals with
age, denoted mp(a) and mg(a) , respectively. They are modelled in SEAPODYM by the
following equations:

mp(a) = mpe P (1.36)

ms(a) = mga’s (1.37)

where parameter mp > 0 is the maximal predation rate, corresponding to age 0 and mg > 0
is the senescence mortality rate at a = 1, and Sp > 0 and g > 0 define the rates of mortality
change with age; their positiveness corresponds to an assumption that predation mortality

decreases with age and senescence increases. So the total mortality rate is simply a sum of
two terms, predation and senescence mortality (Figure 1.10):

m(a) = mp(a) +ms(a) (1.38)
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Figure 1.10: Total mortality rates due to senescence,mg(a) eq. (1.37), due to predation,

mp(a) eq. (1.36), the total mortality rate, m(a) eq. (1.38), as well as the range of variability
of mortality rate my, eq. (1.40), related to feeding habitat index.

In addition, it is assumed that at any age, the natural mortality can be altered by
environmental conditions, such as temperature, availability of food and predators. Hence,
we assume that total mortality rate m can vary in space and time depending either on the
spawning habitat index Hj (for larval and small juvenile stages) or feeding habitat index H,
for adult life stages. Let us denote I the index of habitat occupied by the life stage:

Hg it a=0
I'=< Hj if a€(0,ay] (1.39)
H, if a>ay

where the index H;, used to describe the conditions for survival of juveniles and affecting
only the local (in every position x) mortality rates of juveniles, is computed as follows:

« H, = fi(Aa) x foTy T3, 00), or

« same as above but including the density-dependent function accounting for cannibalism
by adults. However, this is deliberately left out of the scope of this manual due to weak
observability of the mechanism from fisheries data.
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It is important to note that index H; does not affect movements of juveniles, hence their
distribution can be modified by H; only in case of strong environmental variability and the
variable mortality effect estimated by the MLE approach (see chapter 4).

To account for the effect of environmental conditions on local mortality rates, the mor-
tality at age m in eq. 1.38 is affected by the habitat index variability in time and space.
Hence the final formulation of a species’ natural mortality my = my(a, t,x) becomes:

my = m(a)(1+ &)™ (1.40)

where € is the parameter that gives the range of variability of mortality rate with habitat
index within the range my € [m(a)/(1+¢€), m(a)(1+¢€)] where the minimal value corresponds
to the most favourable habitat, I = 1, and the maximal to the less favourable habitat, I = 0.

1.2.7 Fishing mortality

In SEAPODYM, the mortality due to fishing mpr = mpg(t, a,x) is computed based on two
methods: 1) using the Gordon-Schaefer formula and 2) using the catch removal method.
The first classical approach relies on the geo-referenced observed fishing effort £ = FE(t,x)
as in the continuous Gordon—Schaefer model, and in the context of age explicit modelling,
the mortality rate caused by fishing activity for the part of population at age a is

mp(a) =q- E - s(a), (1.41)

where ¢ is the catchability of the fishing gear, and s(a) is its selectivity for the fish at age
a. Note, the fish population is usually harvested with different fishing gears, meaning that
the model must consider multiple fisheries, so the catchability coefficient, g, fishing effort,
E;, as well as the gear selectivity, sy(a), are all fishery dependent. Then the total fishing
mortality is computed as a sum of all mortality rates for fisheries being considered:

mp(a) =) (a7 Ey - s¢(a)). (1.42)
!
The selectivity, s¢(a), being a function of age (length), is computed either as a non-linear
concave function with a limit one (type I selectivity function), sigmoid function (type II
selectivity function) or asymmetric Gaussian (type III):

(a)
W, ) B type I
(1 + e_gf(z(a)_lf)) , type II
sp(a) =  (a)=ip)? R (1.43)
e r if £(a) <[, type 11,
RCORDE R
pr+ (L —ppe 71, if L(a) > [, type 1L
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where
e ¢r is a half-saturation constant in the selectivity function type I;

» ¢r is a slope coefficient in sigmoid-shape selectivity;

e s and oy, are the parameters of Gaussian function (mean and standard deviation);
and

» 5 is the asymptotic value of selectivity at large fish sizes.

The choice of the functional form of selectivity depends on fishing gear and hence is de-
termined by different factors such as the use of hooks or seine, their depths and mesh size
(in case of seine). For example, the sigmoid function is commonly used for long-line fish-
ery, while for purse seine gear, operating at the surface and targeting mostly the younger
(smaller) fish, type III is more appropriate (see Figure 1.11).

The second method, called the catch removal method, consists of subtraction of total
(summarised over all fisheries) observed catch in number of fish of a given age class directly
from the predicted fish density. Note that since catch is by definition a discrete variable,
it is more convenient to use discrete notations for this variable as well as for all operators
including it. Obviously, catch subtraction occurs only in those locations in space where catch
is non-zero. Let us denote all variables in a position of a discretised space, that is, in a grid
cell with indices (i,7). Subscripts f, K,p,,j denote fishery, model integration time step
index, age index and grid cell indices respectively (notations of Chapter 2 Discretisation
and numerical solution).

Let us denote by Ny, ; the population density in number of fish within age class p per

unit area at the model integration sub-step k% (k=1,...,n4 n; — number of iterations in
the inner loop of ADI method). Quantity C’,?};S,i’j = nitC'}}l?;m is the nth portion of the total

observed catch in number of individuals from age class p and time interval K. The fishing
mortality is accounted through the subtraction (removal) of the observed catch directly from
the population density at the ADI method sub-step. To ensure the positivity of the fish
population density, it can only be reduced by the amount that corresponds to the sustained
catch, that is smaller than the model biomass in a given position in space. Hence, we have
the following;:

N, =N N N, 1.44
k+1,p,ij = {Vkp,i,j — M Az, Ay’ kpig | o (1.44)

where a differentiable version of the min function is implemented using a rotated hyperbola
in order to avoid a problem of the non-differentiability of the minimum of two values.
Note that the age stratification in catch is usually not available in the observational

datasets, but the fraction of observed total catch by age Cg};fj can be derived either from
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Figure 1.11: Catchability and selectivity by fishery estimated for different optimization ex-
periments for south Pacific albacore (from Senina et al., 2020a). The y-axis shows the product
of catchability coefficient (constant in space and time) and selectivity function (varies with
size between 0 and 1) so that the plot gives catchability by size. For fisheries for which a
dashed line is present, the catchability was allowed to vary linearly in time to account for
the change in the gears/strategy efficiency. In that case the dashed lines correspond to the
catchability at size at the beginning of the run and the solid lines show the catchability at

size at the end of the run.
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the observed length frequency distributions, or simply using the model fishery selectivity
function. Because of scarcity of fine-resolution length frequency data, currently the second
method is implemented. The latter means that in the catch removal method even though
we use the observed quantities, the mortality induced by a fishery depends on model param-
eters. For more details on catch prediction and parameter estimation see chapter 4 Model
parametrisation.

1.3 Model parameters

We summarise in Table 1.3 all model parameters that control the SEAPODYM dynamic
processes described in this chapter. Note that biological parameters that are used to com-
pute species’ length-at-age, weight-at-age as well as maturity-at-age (section 1.2.4), are not
included in this table as they are not SEAPODYM parameters and usually estimated in
external studies. As described in section 1.2, all dynamic processes in the model are linked
to the environmental variables. In addition, the spatial dynamics (movement) that greatly
influences all demographic processes in heterogeneous environments, is modelled explicitly.
Therefore, a complex and highly dimensional dynamics can be governed by a limited number
of parameters. They are listed in Table 1.3: reproduction parameters controlling spawning
habitat, H,, and source term, S; five parameters of natural mortality, M; 12 parameters
for feeding habitat, H,; and four parameters of movement rates, among which two control
advection rates vy and two define diffusion rates, D. In addition, there are two to four
parameters per fishery, which contribute to model dynamics through fishing pressure, the
number of them depending on the use of a mortality equation (1.42 or 1.44) and selectivity
function eq. 1.43. However, fisheries parameters also influence the model predictions, such
as predicted catch-at-age and length frequency of catch. The methods for catch and length
frequency data predictions are fully detailed in Chapter 4.

Table 1.3: Species dynamic parameters with their notations, definitions and references

0 Eq. Description Units
Recruitment

r (1.13) Reproduction rate in Beverton-Holt function mo !

b (1.13) slope parameter in Beverton-Holt function Nb~'km?
Natural mortality

m,  (1.36) Predation mortality rate age age 0 mo*

By (1.36) Slope coefficient in predation mortality

ms  (1.37) Senescence mortality rate at age 0 mo~!~%s

Bs (1.37) Slope coefficient in senescence mortality

€ (1.40) Variability of mortality rate with habitat index from % in

the worst habitat to M (14 ¢€)) in the best habitat
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Table 1.3 continued

0 Eq. Description Units
Spawning habitat
o (1.7) Standard deviation in temperature Gaussian function of °C
spawning habitat
i (1.7) Optimal surface temperature for larvae in spawning habitat °C
definition
a (1.8) Prey encounter rate in Holling (type III) function day™*
arp  (1.9) Log-normal mean parameter in predator-dependent function g-m™2
Br  (1.9) Log-normal shape parameter in predator-dependent function
Feeding habitat
To  (1.19) Preferred temperature for age 0 °C
T, (1.19) Preferred temperature for the oldest adult fish °C
00 (1.20) Standard deviation in temperature Gaussian function for age °C
0 in feeding habitat
om  (1.20) Standard deviation in temperature Gaussian function at age °C
A+
br (1.19) Allometric power coefficient for thermal preferences at age
v (1.18) Slope of the oxygen function in layer accessibility
O, (1.18) Critical value of dissolved oxygen in the layer ml/L
Ey o (1.21) Epipelagic forage scaling factor m?.g!
FEy  (1.21) Mesopelagic forage scaling factor m?.g~!
Ey  (1.21) Migrant mesopelagic forage scaling factor m2.g~!
FEs3  (1.21) Lower mesopelagic forage scaling factor m?2.g~!
Es  (1.21) Migrant lower mesopelagic forage scaling factor m?2.g~?
E3  (1.21) Highly migrant lower mesopelagic forage scaling factor m?2.g~!
Adult seasonal migrations
t (1.33) Mid-date (day of the year) of seasonal spawning migrations day
of adults
0s (1.34) Critical value of day-night ratio, o, triggering seasonal migra-
tions

Movement

c (1.30) Coefficient of diffusion variability with habitat index
o (1.30) Multiplier for the theoretical diffusion rate %

Vi (1.29) Velocity at maximal habitat gradient and A =1, BL/s
A (129

Slope coefficient in allometric function for tuna velocity

Fishing mortality and catch prediction

q5 (1.42, 4.2) Constant catchability coefficients for all declared fisheries
Sf (1.43) Steepness of selectivity function if type I or II, standard de- cm
viation if type III
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Table 1.3 continued
0 Eq. Description Units

ly (1.43) Threshold length in sigmoid function; mean length in asym- cm
metric Gaussian function

iy (1.43) Lowest selectivity for large fish in case of asymmetric Gaussian
selectivity function
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Chapter 2

Discretisation and numerical solution

The SEAPODYM underlying partial differential equations (PDE) with initial and boundary
conditions egs. (1.1-1.3) are discretised on a regular grid, approximated using the finite-
difference method and numerically solved with the alternating-direction implicit (ADI) method
(Press et al., 1992). The numerical approximation scheme and the numerical ADI solver,
which are used in SEAPODYM, were developed and implemented by Sibert and Fournier
(1994) for the general ADR model without an ageing term. It is fully described in Sibert
and Fournier (1994) and Sibert et al. (1999). The choice of a classical ADI method despite
its known drawbacks, for example, in terms of numerical dispersion, was made for its un-
conditional stability (Press et al., 1992), which ensures convergence to a solution for all step
sizes and dynamic rates. This method’s property enables integration of the numerical model
within the optimization method, which implies variations of model parameters.

The model equations are discretised on a regular Arakawa-A grid. The use of the
Arakawa-A grid for the spatial dimensions implies that all quantities are evaluated at the
same position, here in the centre of the grid cells. The spatial domain has irregular bound-
aries. Several boundary conditions are implemented: zero-flux (Neumann) boundary con-
ditions, absorbing (Dirichlet) boundary conditions and conditions for connected east—west
borders in the case of a global domain. This chapter describes in detail the discretisation
of the model dimensions, the finite-difference approximation of partial derivatives and the
numerical solver.

2.1 Discretisation of model dimensions

2.1.1 Space discretisation

The spatial domain Q € [ Xy, X,,] X [Y, Y,y is uniformly discretised in n, x n, cells, with a
constant step Az (resp. Ay) along the x (resp. y) direction, with the origin (0,0) being the

93
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Figure 2.1: Regular Arakawa-A grid used in numerical approximation of SEAPODYM equa-
tions. The quantity N; = N(z;,-) is the population density described by model eq. (1.1).

north-west corner of the model domain:

Az = (X, — Xo)/ne, Ay = (Y, —Yo)/n,. (2.1)

We denote by (i,7), i = 1,...n,, j = 1,...n, the cell that corresponds to the subdomain
[(Xo + (i — 1)Ax, Xo + iAx] x [Yo + (j — 1)Ay, Yy + jAy]. All quantities are evaluated at
(xi,y;), the centre of the cell (4, j) of the Arakawa-A grid (Figure 2.1), that is

1

1 :
Yy = Yb—l—(j—)Ay, jg=1,...,n,. (2.3)

2

2.1.2 Time discretisation

The ADR equation is numerically solved using a multi-incremental algorithm. The time
period [Ty, T,,] is first split into ng steps or outer loops:

AT = (Tm—T())/nT, TK:TQ+KAT7 K:O,...,TLT. (24)

where the coefficients of the ADR equation are supposed to be constant. Each outer loop is
in turn discretised into n; uniform substeps or inner-loops: for a given K € {0,ny — 1} we
define

At = (TK—H — TK)/TLt, tk = TK + k‘At, k = 0, ceey Ny (25)

This multi-incremental algorithm is applied with an implicit Euler integration scheme (see
below) that ensures both stability and good approximation of the solution.

2.1.3 Age discretisation

Population age dimension is discretised into age classes: from the first age class including
age a = 0 to the last age class, including the maximal age m of the individuals in the
population. In addition, the last age class, also called the A+ class, is larger in size than
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the other age classes. Thus, we define n, age classes characterized by their age intervals

lap, api1], p=0,...,n, and the age steps (or age class life period) as follows:
ANa, = api1 —ap, p=0,...,n,—1, (2.6)
where the age steps Aa, = const and Aa,,_1 > Aa, for p =0, ...,n, — 2 specify uniformity

of all age classes but the last one. Mean age of the age class (p) is then given as

- ap+1 + Clp

=" p=0,...,n4. (2.7)
Dimension ‘ Variable ‘ Range ‘ Index ‘ Range ‘ Step
x-coordinate x; [Xo, Xon) i 1,...,n, | Ax
y-coordinate Yj Yo, Yl J 1,...,ny | Ay
time (outer loop) | Tk (To, T K 0,...,np | AT
time (inner loop) | ¢ Ty, Tks1] | K 0,...,ny | At
age ap, [0, a P 0,...,nq | Aa,
Table 2.1: Dimension discretisation indices
Notation convention:
e Index names and their meaning are shown in Table 2.1.
« For a given quantity () we define
Qk,p,i,j = Q(tk‘a ap7 Li, y])a (28)
and
QK7p7i’j = Q(TK7&p7x’L7yj)' (2.9)

» When there is no loss of clarity we may omit dependence of some variables (or indices).

2.2 Approximation of equations and numerical scheme

The partial derivatives of system (1.1-1.3) are approximated using centred finite differences.
Time integration is performed using a two-step splitting method: advection—diffusion and
mortality processes are solved using ADI method along spatial directions: k — k + % for the
z-direction, k + % — k + 1 for the y-direction. The ageing term is integrated outside of the
time integration loop.

During an outer loop period [Tk _1,Tk|, we consider that the forcings terms (parameters
of advection-diffusion and mortality processes) are constant and equal to their value at Tk
in order to be consistent with the implicit scheme.
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2.2.1 Age integration

The ageing process is taken into account in between the time integration loops once the
solution of the ADR equation is computed over the full time step, that is, between the time
steps [Tx_1,Tk] and [Tk, Tk11] (see also section 2.4). The integration of the ageing term is
then done by updating the cohort densities as follows:

{NK,na - NK,na—i_NK,n,lfl

NK,p = NK,pfl for p= (na _ 1) -1 (210)

2.2.2 Time integration

Time integration from time Tk _1 to time Tk in the ADI method is done using an iterative
two-step splitting method along spatial directions. During these two steps, the ageing
process J, N is not taken into account, that is, age class index p is kept constant during time
integration.

First half step

The first implicit half inner-loop time step k& — k + % along direction x solves for each
inner-loop index k = 0...ny:

Nepr =Ne 9 ( 8Nk+;> o)

A o \ P aa ) T g (uNeey) + MicNiyy
) ON, 0
—(Dg—==) — = (vgNy,) . (2.11
ay \" " oy > dy (0K Vi) (2.11)

Second half step

The second implicit half inner-loop time step k + % — k + 1 along direction y solves for each
inner-loop index k = 0...n;:
Nigp1 = Nyt 9 ON}11 0
—2— — D — (vg N, =
ALJ2 dy ( dy ) gy (VM)

0 ONp1\ 9
ax<DK o )—ax(uKNHé)—MKNHé. (2.12)

We then apply discretisation operators (2.13), (2.14), (2.17) and (2.18) depending on the
considered cell. For clarity we omit the age class index p in the following paragraphs.

2.2.3 Partial derivatives approximation

Hereafter we denote by v and v the components of the total velocity v = v.+vy in eq. (1.1).
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Advection terms

0 0
Derivatives — (u/N) and — (vNN) are approximated by centred upwind differencing:

ox Oz
1 .
O(uN) N M(Ui,jNi,j‘ —uim1,;Nim1y) 3wy >0, (2.13)
o b AliL’(ui-&-LjNi-i-lJ —uiNig) i uig <0,
o(uN) 5 Aly(vi,jNi,j —vij-1Nij-1) if v >0, (2.14)
R Aly(vjﬂ,ijH —vigNig) i v <0.

Diffusion terms

ox Ox oy dy

ated as the mean between the forward finite difference and the backward finite difference of
the corresponding terms. We get:

0 ON 0 ON
Derivatives — (D ) and — <D> are approximated using centred differences evalu-

0 ON oD ON O’N
2 (pZh)| =& &8 it 2.15
o < 8x>‘ij Ov |~ Ov | 7 2 (2.15)
- 1 <Di+1,j — Dy o Niy1;— Nij
2 Ax Ax
Dij;— D1 « Nij — Ni—l,j)
Ax Ax
Ni—l,' — QNZ’ + Ni+1,'
+ Di,j X J AJ,‘QJ ] (216>
~ N Dij+Diry N, Dit1; +2D; + Diy
b 2Ax? Z’J 2Ax?
D.; ; + D 1.4
Ny =t T il 2.17
+ +1,j A2 ( )
0 (,ON o n Dig+Dijon o Dija+2D;+ Dij
D ~ 2,7—1 2 Nz,j 2
dy dy i 2Ay 2Ay
Di;+ Dy
Ny 2 P (2.18)

2Ay?
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2.2.4 Numerical scheme

For a given grid cell inside the model domain (interior cell), we consider four types of neigh-
bours:

ocean cell inside the computation domain,
e ocean cell outside the computation domain,
« ocean cell within the East—West overlap zone (in the global domain set-up only),

land cell.

Hence, the first three types of interior grid cells are open cells and the last one is the closed
boundary cell. Hereafter we provide the model numerical scheme in the interior grid cells;
depending whether they are open or closed cells.

Discretised equations in open grid cells

In the interior cells surrounded by ocean cells the implicit scheme of eq. (2.11) for the first
half time step £k — k + % uses spatial terms discretised in the x direction. According to
upwind differencing of advection terms, these discrete equations account for the positiveness
of ug,;; and vg,

o Case ug,;; >0and vg,;; >0:

k+§71717\7

(_uK,i—l,j B Drj + DK,i—l,j)

Azx 2A 72

2 wug;  Drkiv1;+ 2Dk, + Dk
HRCEES <At A T 202

Dyij+ Dk it1j
N () =

Dkij+ Dkij—1 = Vkij-
Niij—1 < N + Ay (2.19)

+ MK,i,j)

2 Vkij; Drkij+1 +2Dkii+ Diij1 Dkij+ Dgij1
N i o )0, _ )] )] B2y N i )05 )]
T ki <At Ay DAy T Nkiin I
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o Case UK i > 0 and VK < 0:

<_UK,i1,j B Dy + DK,il,j)
Ax 2A 72

2 wug; Dkt + 2Dk, + D1

* Nk+%’i’j (At * Az + 2A 12
Dkij+ Dk it1j
Dk ij+ Drijw 2 vki;  Drij+1+ 2Dk + Drij—
N P 50,] 2y N i - 50,] _ 50,] 50,] 50,]
fiba ( 202 AV VARV 202

Dk ij+ Drijw UK,m‘H)

+ MKJ'J)

(2.20)

N
+ Nijij+1 < SINY: Ay

o Case ug,;; <0 and vk, ; > 0:

N Dygi;+ Dk
k+ii-15\ 7 A2

2 uki;  Drkit1j+ 2Dk + Dk i1

+ NkJF%’i’j (At Az * 2Ax?
ukiv1,j Drij+ Drivig)
+ Nk+%,i+1,j < Ar - N =
Dkij+ Dkij-1  Vkij-1
Nigj—1 ( AN + Ay (2.21)
2 Vki; Drkije1 +2Dk,;+ Diij—1 Dgij+ Dk

g — + Nijij+1

At Ay 2Ay? 2Ay?

+ MK,i,j)

o Case ug,;; <0 and vk, ; <O0:

N Dkij+ Dki-1;

ktdi-15\ 7 A2

2 wuk;; Dkiv1j+2Dk,j+ Diio1
+ N’”%’i’j (At Az + 2Ax?
uk,iv1j Drij+ Drivig)
+ Nk+%’i+1’j (+ N 2Ax2 N
Dkij+ Drij1 2 wkij Drijr1+2Dki;+ Dkij

N l - 2y P2y N l . . 2y _ 2y 2y 2y

kit ( Ay TR AT Ay N

Dk ij+ Dk ij+1 UKMH)

+ MKH>

(2.22)

Nisij

For the second half time step k + % — k, the implicit scheme of eq. (2.12) uses spatial
derivatives approximated along the y direction and accounts for the positiveness of u ; ; and

UK i,j
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o Case VK ij > 0 and UK i > 0:

N Vk,ij-1  Drij+ Drkij—1
k+lg5-1 | — Ay - INT

+Nk+1,@'7j< + K,i,j + K,i,j+1 K,i,j K,i,j 1)

At Ay 2Ay?
D i + D i .
+ Nit1,i+1 (- £ 7]2Ay2K7 +1’J> =
Dyij+ Dki1j; Uki-1;
NH%’Z_M ( 2A 12 + Ax )
2 uk; Driv1j+2Dkij+ Dri1;
N (At Az 2Ax?2 - MK”)
Dkij+ Dk it1j
T Nit 11y ( j2Ax2 J) (2.23)
» Case vg;; > 0and ug,;; < O0:
N Vi,ij—1  Drij+ Drij—1
ktli—1 | — Ay - SINE
2wk Dkij1+2Dki;+ Diij
N i _ 50,] 50,] 50,] 50,]
+ k+1,i,5 <At + Ay + 2Ay2
Dyii+ Dgit14
+ Nit1,ij+1 <_ s JszzK’ +Lj> =
Dkij+ D1
Nerpions (50 )
2 uk;; Dkt +2Dk;+ Dgio1j
N (a7 + A - v ~ M)
Dgij+ Driv1j UK+l
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o Case VK < 0 and UK i > 0:

N D+ Dgij-1
k+lij—1 | — TN

2 wki;  Drkije 2Dk + Diij

+ Nit1,i,5 <At ~ Ay + N
Drij+ Dkit1j | Vkij+1
+ Nit1,,5+1 <— J2Ay2 L+ Ajy =
N Dki;+ Dgi-1j Uki-1;
webits (T 3A Ar

2 uki; Dgiv1; +2Dki;+ Dgioj

* NkJF%’i’j (At Az 2Ax2 B MK’M)
Dy ij+ Dk it
+ Nk+%,i+1,j ( JQAxQ ]> (2.25)
» Case vg;; <0 and ug,;; <O0:

Dgij+ Dgij-1
Nit1,i5-1 <— ]2Ay2 J

2 wki;  Driji1 +2Dkij+ Diij1
+ Nkt <At ~ Ay + A

Drij+ Driv1j | VKij+1
+ Nyt +1 <— ]2Ay2 ! 4 A; =
Dygij+ Dki—1

NkJF%’Z_l’j < 2A 2 )

2 UK .4 DK'+1'+2DK"+DK'—1'

N _ 727J _ 77/ 7] 727] 72 7_7 _ M ’L )
t Vet kg (At Az 2A 12 Kiig
Dkij+ Drit1j UKkt

Discretised equations in closed grid cells

We now write down the model numerical scheme in closed grid cells, that is, neighbouring
with either a land or ocean grid cell assigned as a boundary cell considering three types of
boundary conditions: 1) Neumann boundary conditions, 2) Dirichlet boundary conditions,
and 3) a special case of Dirichlet boundary conditions in the case of the global domain.

1) Neumann boundary conditions
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Neumann boundary conditions specify impermeability of domain boundaries. These condi-
tions are applied in the case of closed cells, that is, neighbouring with either land cells or
ocean cells, for which impenetrability can be assumed due to natural causes.

Let’s use the case of a left-closed boundary in the x-direction and open boundaries in the
y-direction in eq. (2.19): we have Nk+%,z>1,j = N, Dii1;=0and ug,;_1,; =0. Then
if UK i > 0 and UK,ij > 0 we get

1 . .
+§77'9.]7

2 wuku;  Drkivij+ D Dy + Dk it
Nisgis (At A T 2A 72 * MK””’) TNk i (_ 2A 72 ) -
Dkij+ Dgij-1 = Vk,ij-1 2 wki;  Drijy1 +2Dk; 4+ Dk
N j—1 5 + + N | 75 — - 5
2Ay Ay At Ay 2Ay
D i + D i
+ Niij+1 ( il ’j2Ay2K’ ’JH) (2.27)
Also if ug;; < 0 and vg,; > 0 we get
2 Dy + Dkij ur,i+1,; Drij+ Diivi
Nisgis <At 272 + MK”"J') T Nk i ( Ar 2A72 ) -
Niijr Kij T PKij—1 n UK ij—1 A VKij  Vkigr + 2Pk + PKij-1
2Ay? Ay At Ay 2Ay?
Dy + Dk.ij
+ Npij+ ( - J2Ay2K7 JH) ' (2.28)

2) Dirichlet boundary conditions

Dirichlet conditions specify the value that a model variable should take at the boundary.
This value can be zero (absorbing boundary) to imply the loss of quantity, or non-zero to
account for the incoming quantity from outside the domain. Dirichlet boundary conditions
are applied in the case of a regional domain.

Let us take the case of a left-open-to-global boundary in the x-direction and open bound-
aries in the y-direction in eq. (2.19): we have Nk+%7i_17j = 0 and the corresponding contribu-
tion is part of the second member of the equation. For example, if ug;; > 0 and vk, ; > 0
we have

2 wugu;  Drgit1j+ 2Dk, + Dk
NH%’M (At + Az + 2A 12 * MK’i’j>
Dgij+ Dk it1j
Ny (- ) =
Dki;+ Dkij—1 = Vkij— 2 wki; Drijs1+2Dk;+ Dgij
Niij-1 + Niij | — — —
2Ay? Ay At Ay 2Ay?

(2.29)

Dy + Drkij1
+ Npij+ ( o 2 .
/ 2Ay?
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3) Global domain

In case of a global domain, namely, the domain covering 360° in a longitudinal direction,
we need to take into account fluxes that come through the western (eastern) boundary from
the east (west) of the domain. A special case of cyclic east-west boundary conditions is
implemented in the SEAPODYM numerical scheme. To make sure that the quantity flows
through the open east—west boundaries in the context of the ADI method, we extend the
computational domain on both sides along the z (longitudinal) direction to create the buffer
zone. The eastern (western) buffer zone is then filled with values from the west (east) of the
domain. The size of the buffer zone is defined as large enough to cover the maximal distance
of the mass movement during one outer time step [Tx_1,Tk|. The discretised equation is
then solved on this extended domain, while at the end of the resolution, we only keep the
solution over the non-extended part of the domain.

2.3 Tridiagonal matrix system and its resolution

The above numerical scheme eqs. (2.19-2.29) can be rewritten in matrix form with the
matrices on the left-hand side being tridiagonal. For clarity, we use all dimensional notations
here, even though the age index p remains constant within the resolution of linear system.
Thus, to get the numerical solution of model (1.1) at a given time step, we solve iteratively
(inner loop) two systems of linear equations, and each iteration implies resolution of n, x n,
and n, X n, systems of linear equations in a two-step time splitting ADI method.

Thus, at the first half-step we solve n, x n, linear systems of size n, x n, along the
x-direction:

A—K,p,j : Nk+%,p,j = gk,p,j (230)

and then at the second half-step we solve n, X n, linear systems of size n, x n, along the
y-direction:

Brpi Nitipi = hk+%,p7i. (2.31)

Vectors Nk-l-l,p,j = (Nk—‘r%,p,l,j? Ce 7Nk;+%,p,nw,j)T and Nk-‘rl,p,i = (Nk-i-l,p,i,la Ce 7Nk:+1,p7i,ny)T
consist of unknown values of population density along the  and y dimensions respectively.
These values are found by solving these linear systems with the help of the forward—backward
Gauss elimination (LU decomposition) method.

The right-hand-side vectors gk, ; = (Gkp1j,- -+ Jkpna.j) - in system (2.30), and hy 1=

(thr%,p,i,l? ceey hk+%7p7i’ny)T in system (2.31) are constructed either from previous step solu-
tion, at K — 1 (for k = 0), or from an intermediate solution of the Gauss method, at all
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k = 1,...,ns, obtained after each iteration of inner loop of the ADI method. Thus, the
elements of vector gy, ; are computed for given a = 1,...,n, and j = 1,...,n, from the
coefficients of the matrix B and density at time k as follows:

4
Ikpii = —AKpijNepij—1 + (At - GK,p,i,j) Nipig = fepigNepig+r- (2.32)
The elements of vector hk+%7p7i are computed for given p=0,...,n, and i = 1,...,n, from

the coefficients of the matrix A and density at time k + % as follows:

4
st pig = ~KpajNisdpi-15 <At - bfﬂp,z;j) Nittpig = KpiiNiglpirry (2.33)

Matrix A of the linear system (2.30) is defined forall p=1,...,n, and forall j =1,...,n,
as follows (notations of Sibert and Fournier, 1994):

bkpi1j Crplj 0 . 0 0
K ,p,2,j bK,p,2,j CKp2,j 0 0
0 AKp3,j bK,p,S,j CK,p,3,j e 0
AK,p,j = . .. . . y : . (234)
0 e coo OKpma—1j OKpne—1j CKpne—1;j
0 o o 0 QK ps DK ponsi

Matrix B of the linear system (2.31) is defined for all p=1,... ,n,, and forall: =1,...,n,
as follows:

€Kpit  JKpil 0 . 0 0
dipi2 €xpi2 [Kpi2 0 0
0 dkpi3 €Kpi3  JKpi3 . 0
BK,p,i = . . . . . : . (2‘35)
0 Ce e dK,p,i,ny—l eK,p,i,nyfl fK,p,i,ny
0 e e 0 A piny,  CKpin,

Below we provide the diagonal coefficients of matrices A and B given the type of the
boundary conditions.

2.3.1 Diagonal coefficients for Neumann boundary conditions
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For a given p=1,...,n, and j = 1,...,n,, the elements of matrix Ag,, ; are’
Uk pi-1; Drpij+ Drpi-1;  open 0
N N right closed “Kpij =
R Dy pii+ Dgpi1; open
a i = sP52,] Py 5] pe 236
Kbt - IA 2 right closed ~ “Kpij <0 (2:36)
0 left closed
2 UKpiy n Dk pit1j+2Dkpij+ Drpi-1;
At Az 2Ax?
+Mk pi open Uk pij > 0
2 Ukpig L Dk pit1j+2Dkpij+ Dipi-1
At Az 2Ax?
+Mk pi open Ug pij; <0
_ 2 Dy pii+Dropiii )
brpij = A 4 ptd 22 ZK’p UM Kopij right closed ugp;; >0
T
2 Uu I D i + D i—1.9 .
in [X; ] K, J2Ax2K7p N Mg i right closed g, <0
2 Dy pivii+ Dgopii
A7 4+ 2k +;’jA:; Kol 4 g Kopi.j left closed — ugpi; <0
Al + IXZK d 4 2K +;’JA$2 Kpbi 4 M Kpij left closed — ugpi; >0
2
A + Mk pij closed
(2.37)
Dk pij+ Dk piti,j open
(_ I 12 > left closed UK pij >0
crpii =1 (Wpittj  Drpij+ Drpit1;\  open 2.38
Kopid ( Ar A2 left closed UK pij <0 ( )
0 right closed

!Note that the diagonal coefficient of matrix A, af,,, j, which is always written with four dimensional
indices, should not be confused with age notation a, nor with discrete age intervals a,.
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For a given ¢ = 1,...,n, elements of By ,; are given by
Ay 22 bottom closed  YK.p.i.j
dgcii = Dk pij + Dk pij—1 open 2.39
Kb - YN bottom closed VK. < U (2:39)
0 top closed
2 Ukpig n Drpiji1 + 2Dk pij + Dk pij1
At Ay 2Ay?
+MK,p,i,j open VK pij =~ 0
2 Ukpiy | Prpijr +2Dkpis + Drpij—1
At Ay 2Ay?
+MK,p,i,j open VK pij < 0
o 2 Dgypij+Drpijia
(A i = - Pyt,J Pyt,J L. ..
K.pii,j A7 + NG + Mg pij bottom closed vg,;; >0
2 kg Drpij+ Drpij—
_—— My i bottom closed vk ,;; <0
At Ay 2Ay? + MK Kbt
2 Ukpij  Drpij+1+ Drpij
— 22+ My i top closed Vipii >0
At T Ay 2Ay? Kpid P Kpid
2 Dgpijr1+ Drpiy
A + AN + Mg pij top closed Vi pij <0
2
A + Mg pij closed
(2.40)
Dk pij+ Drpij+1 open
<_ : ]2Ay2 e top closed UK p,ij > U
L= Vkpij+1  Drpij+ Dkpij+ open 2.41
TKpij ( Ay - 2Ay? top closed UK p,ij <0 ( )
0 bottom closed
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2.3.2 Diagonal coefficients for Dirichlet boundary conditions

Let us provide the general formulae for movement rates as well as for diagonal coefficients of
tridiagonal matrices of linear system that take into account Dirichlet boundary conditions.

First, we define the following expressions to account for the type of neighbouring grid
cell

1 if  left open-to-global
9 _
Li; = { 0 else (2.42)
1 if  right open-to-global
g _
iy = { 0 else (2.43)
We define the movement rates given the closed boundary
DK,PJ'—lJ = _DK,p7i,j left-closed
DK,p,i+1,j = _DK,p,i,j I‘ight—ClOS@d
Ukpi-1; = 0 left-closed
Uk pit1,j = 0 right-closed (2.44)
UK pij = max(ug,;;,0) left-closed
UK pij = min(ug,,;,0) right-closed
We update the expressions including finite differences as follows
sigh(ugpi-1j) +1  ukpi-1; Drpij+ Dipi-1,
AR pij =~ p2 ! X gx - JQAxQ P (2.45)
1 —sign(ugpit1j)  Ukpitly Drpij+ Drpivij
VEpij = G X T e e (2.46)
Hence, with Dirichlet boundary conditions diagonal coefficients become
QK pij — OKpij X (1 — LZ]) (247)
2 . UK pij
bK,p,i,j = Kt + 81gn(uK,p7i7j)7A]; J (248)
+ axpig X L+ Yrpig X R
Drpiv1j+ 2Dk pij+ Drpi-1
+ 2Ax? T+ Micpig
CKpij = VEpij X (1= Rij) (2.49)

Similar expressions can be obtained for the coefficients of matrix B. The same formulas
for the right-hand-side vector elements as eq. (2.32) and eq. (2.33) are simply updated with
Dirichlet boundary conditions diagonal elements dg p; i, €K p,i i, [Kpi; a0d G pijs bk piir Ci pij
(2.48-2.49) for the = and y-direction respectively.
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2.4 Algorithm

2.4.1 Initial conditions

Each cohort p > 0 is initialised at initial time, for all 7, j as
Nopij=Npij, p=0...n4 (2.50)

To obtain N in order to initialise the model, we use either a previous estimation of the
population density if available for a given time step (so called restart), or generate this
vector designing the spin-up run (see Chapter 4 for more details).

2.4.2 Age initialisation

The density of larvae, N(K,0,1,7), that is, the population density of the age class p = 0,
is ‘initialised’ at each time step K = 1,...,nyr in all 4,j according to eq. (1.13). This
initialisation takes place after time and age integration (sections 2.2.1 and 2.2.2).

2.4.3 Main loop

The population density is initialised before entering into the time loop. The age loop is
embedded into the time loop. The outer loop includes the updates of the environmental and
fisheries data, the update of habitats and all dynamic rates for each age class, resolution
of numerical model with the ADI method, age integration, which occurs once the full step
[T)—1,Tk] of the discretised ADR model is done, and finally the age initialisation. These
steps are executed as detailed below:

o Initialise population density as in eq. (2.50) at K =0 for all p=0,...,ng;
o Run the outer time loop for K =1,... ny:

e update all forcing variables for time Tk;
e do age loop: for p=10,...,n,:
« update coefficients of discretised advection—diffusion-reaction eq. (1.1), ugk,,
Vi.p, Drp, Mk p;

* compute the elements of all matrices Ak, ;, j =1,...,n, (2.34) for the first
half time steps;

« compute the elements of all matrix By ,,;, ¢ = 1,...,n, (2.35) for the second
half time steps;

% do inner loop of the ADI solver for kK =1,... ny:
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o loop for j = 1,...,n, to solve n, linear systems (2.30) along the -
direction at the first half time step:

i) compute right-hand side elements g;; (2.32) using the solution of
linear system either at k = 0 (for K — 1) or at k + 1, that is, Ny41,;

ii) solve system (2.30) to get N vector;

k+3.p.j
o loop for i = 1,...,n, to solve n, linear systems (2.30) along the y-
direction at the second half time step:

i) compute right-hand-side elements h, Y (2.33) using the solution
NH%’p’j of the first half-step;

ii) solve system (2.31) to get Ny41,, vector, at k = n, save the model
numerical solution corresponding to time step T'k;

e do age integration as described by egs. (2.10);
e compute the new larval density Nk given by eq. (1.13);

e save the state vector and auxiliary variables for each time step Tk.
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Chapter 3

Configurations and model runs

3.1 System requirements

SEAPODYM is a Linux application. When it is used for simulation runs only, namely
for simulating population dynamics with fixed (presumably optimal) parameters, there are
no specific requirements for the computer configuration. In general, the computer power
depends on the numerical model resolutions. For example, Pacific-scale simulations at 1°
spatial resolution and monthly time step can be easily run on a laptop with 8GB of RAM and
a 64-bit CPU operating at 2GHz. However, for higher resolutions and/or global configura-
tions, especially when parameter estimation is envisaged, the advised minimal configuration
to run the application efficiently should have a 64-bit CPU at 2GHz and higher, with at
least 32 GB of RAM. The physical memory is the key requirement in the case of param-
eter estimation or other procedures involving the gradient computation. This is because
the backward (adjoint) differentiation method stores all intermediate variables needed for
the exact evaluation of a cost function gradient in the operational memory. If there is not
enough RAM available, the program will dump all temporary data on the hard disk (in files
cmpdiff.tmp and gradfil.tmp), which will significantly increase the overall runtime.

This chapter is for users who want to run the application with the code and executable
of the program that are provided. If modifications of some part of the model code are
desired, it is highly recommended that the developer’s team be contacted, since changes
in the code can interfere with computation of the likelihood gradient and hence alter some
model functionalities.

3.2 Installations

Compilation of the source code requires installation of the two additional libraries listed
below.

71
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libxml2 library is used to read and write all application parameters in a text-based xml
parameter file. If it is not installed already, you can download and build the library
from ftp://xmlsoft.org/libxml2

Autodif libraries provide an array language extension to C ++ enabling the automatic code
differentiation (Autodif User’s Manual, 2021). Please visit the ADMB project website
for the latest release of the ADModel Builder software! including Autodif libraries and
follow the instructions to compile and configure it.

After installation of the ADMB software, you need to declare the environment variable
in the .bashrc file pointing to the address where the installed libraries can be found,
for example:

export ADMB_HOME=/path-to-admb-folder/

This variable needs to be specified in the SEAPODYM Makefile. In the case when
shared libraries are to be used, add the following in the .bashrc as well:

export LD _LIBRARY PATH=$ADMB_HOME/1lib:$LD LIBRARY PATH

Once the libraries have been installed and configured, create the source directory, place
the code there, edit the provided Makefile.i64 (see Appendix B) to make sure that you have
the paths and linker flags recognisable by your gcc compiler, then compile the SEAPODYM
application by typing the command:

make -j -f Makefile.i64 2

If there are no conflicts in libraries and compiler versions, and all paths are specified
correctly, the executable seapodym__cltags will be built in the source code directory. It
is convenient to create the alias in the .bashrc, for example, seapodym to point to this
executable, so it can be called without the full path.

3.3 Running SEAPODYM with predefined configura-
tion

The SEAPODYM-MASS application runs in a command line. Typing the following com-
mand:

!Note, the program will not use ADModel Builder itself, but only Autodif libraries libado and libadt.
2The option -j performs a parallel execution of make, and it can be omitted.


ftp://xmlsoft.org/libxml2
www.admb-project.org
http://code.google.com/p/admb-project/downloads/list
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seapodym --help

provides the usage and the list of available running options:
Usage: seapodym [options] <parfile name>

Options:
-h, —-help Print this message and exit.
-H, —-hessian Compute Hessian matrix.
-p, ——projection Compute 2D-projection of the likelihood
on a grid specified in parfile.
-8, —-simulation Run simulation without optimization.

-sa,--sensitivity-analysis[=FLAG] Make sensitivity analysis. By
default[=0] sensitivity function takes
model predictions only. If FLAG=1
the sensitivity function takes both
predictions and observations. If FLAG=2
ONE-AT-A-TIME sensitivity analysis.

If FLAG=3 ALL-AT-A-TIME sensitivity
analysis.

-t,--twin-experiment [=FLAG], Perform identical (by default, or FLAG=0)
twin experiment. If FLAG=1 the noise
will be added to the artificial data.

-v, —--version Print version number and exit.

According to this prompt, the program may run with a set of different options, corresponding
to available types of runs (described in section 3.5), and requires the configuration file, also
called the parfile. However, prior to running the first simulation, one needs to verify the
availability of all necessary input data and to configure the paths to these data in the parfile.

3.3.1 Input directories

First, place the forcing datasets that were provided together with the parfile in the input
directories and organise them as shown in Figure 3.1. Create two directories, for exam-
ple, run-OGCMname-domain-resolution and fisheries/spname, for the environmental and
the fisheries data respectively. Provide correct absolute paths to these directories in the
configuration XML file, in strdir and strdir fisheries. Second, make sure that the en-
vironmental forcing directory contains all necessary input data in binary format and the two
ASCII files called mask *.txt and topo™*.txt, as shown in Figure 3.1. Note also that fisheries
data should include spname catch *.txt file as well as one or several spname LF *.txt
files as described in the XML file (see panels (b) and (c) in Figure 3.1).
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/run-OGCMname-domain-resolution/

./mask.txt
./topo.txt
./BGCH-data DYM files
./OGCM-data DYM files

Euphotic depth:
OGCname_domain_zeu_resolution.dym
Primary Production:
OGCname_domain_PP _resolution.dym
SST:
OGCname_domain _sst_resolution.dym
Dissolved oxygen:
OGCname_domain_0O2_Li_resolution.dym
Temperature:
OGCname_domain_temperature_Li_resolution.dym
Currents:
OGCname_domain_u_Li_resolution.dym
OGCname_domain_v_Li_resolution.dym
./forage/ i€[1,2,3]

Fbiom_bathy.dym
Fbiom_epi.dym
Fbiom_hmbathy.dym
Fbiom_mbathy.dym
Fbiom_meso.dym
Fbiom_mmeso.dym

./init/
11998 /spname_cohorts.dym
ic2010/spname_cohorts/dym

(a)

./fisheries/spname/

spname_catch.txt
spname_LF_WCPO.txt

(b)

<!-- Working Directory --=
<strdir value="/data/run-0GCMname-domain-resolution/"/=

<strdir_ forage value="forage/"/>
<strdir_init value="init/"/>
<strdir_fisheries value="/data/fisheries/species/"/>

()

Figure 3.1: Organising folders and files with SEAPODYM input data. (a) The
folder run-0GCMname-domain-resolution includes the binary DYM files with environmen-
tal data (physical, biochemical and biological forcings) as well as ASCII files with land
mask(s) and auxiliary data (topographic index, Exclusive Economical Zones contours), and
two subfolders with forage fields and initial conditions. (b) The fisheries data files are stored
in a separate folder. (c) Input directories in the configuration file: the paths to the environ-
mental (strdir) and fisheries data (strdir_fisheries) are absolute, whereas the paths to
the initial conditions (strdir_init) and to the forage data (strdir_forage) are relative.
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3.3.2 Simulation run

When everything is set, you are ready to run the first simulation. It is advisable to create
a running directory, where the model will be executed and the output files will be written.
The command to run a simulation is:

seapodym -s <parfile name>

Note, if the option -s is omitted then seapodym will actually start minimising the negative
log-likelihood according to the configuration in the parameter file parfile, and only after
completion of the iteration cycle will it run the simulation during which the model output
will be written. If this is not desired, for example, if the reference parameter file already
contains the MLE solution and the goal is to get the model outputs, then always use the
simulation option.

If the first simulation ran successfully, the output folder was auto-generated in the running
directory and the output files were written. In this case see section 3.6 for a detailed overview
of model outputs. Otherwise, if the run ended abnormally, continue reading the following
sections to understand the model configuration, to identify and troubleshoot the problem(s).

3.4 Parameter file

Configuration of a SEAPODYM run is written in an XML file, called a parfile (see full example
of a parfile in Appendix A.2). The following sections explain model configuration through a
detailed description of the parfile.

3.4.1 Spatial domain and resolution

The model spatial domain is defined by its rectangular geographic area and the complex
boundaries within this area. The geographic extension is chosen in line with the knowledge
of habitats and migrations of the modelled species: the domain is always set larger than
the known area occupied by the population in order to avoid the impact of closed boundary
conditions. The complex boundary of the computational domain is described by the land
mask (see below). The spatial resolution of the two-dimensional domain is set up by two
parameters, deltaX and deltaY, which define the constant step of the uniform Arakawa-A
grid used to resolve model 1.1 numerically (more details in Chapter 2). Note that irregularity
of the grid is handled in the code through latitudinal correction of the grid cell size. The
vertical resolution is accounted implicitly in the model, and is defined by the euphotic depth
that is provided as a forcing variable (see below). The number of vertical layers is fixed in
the attribute nb_layer. This setup cannot be modified.
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Zl - -EzmrsssssssesmzmEe= - -
=<!--Domain and resolution parameters--=
HMEEE————t——————————— X

<latitudeMin value="-54.5"/>
=latitudeMax value="65.5"/=>
=longitudeMin value="88.5"/>
<longitudeMax value="290.5"/>
<nb_layer value="3"/>

=deltaX value="120"/>

=delta¥ value="120"/>

Figure 3.2: Example of a computational grid configuration in the parfile. Note that the
longitudinal and latitudinal coordinates correspond to the corners of the uppermost grid
cells and not the centres of the first and last grid cell.

An example configuration for the Pacific Ocean model domain with 2° resolution is shown
in Figure 3.2. Table 3.1 provides a detailed description for each configuration parameter.

Table 3.1: Definition of the domain boundaries and the spatial resolution in the parfile. The
names in the left column correspond to the names of the XML nodes.

Parameters Description
latitudeMin The latitude of the southern grid cell corner, from +90N to —90S
latitudeMax The latitude of the northern grid cell corner, from +90N to —90S

longitudeMin The longitude of the western grid cell corner, from 0 to 360
longitudeMax The longitude of the eastern grid cell corner, from 0 to 360

nb_layer The number of vertical layers (always 3)
delta_x The grid resolution in longitudinal dimension, in nautical miles
delta_y The grid resolution in latitudinal dimension, in nautical miles, see

eq. (2.1) and Figure 2.1

3.4.2 Land mask

The land mask is a matrix with integer values of the size corresponding to the number of
grid cells in longitudinal and latitudinal dimensions. The land is denoted ‘0’ and the ocean
cells are defined by non-zero values as follows: 1 — only epipelagic layer exists, 2 — only two
vertical layers exist (i.e., epipelagic and upper mesopelagic), and 3 — all three layers exist
(epipelagic, upper and lower mesopelagic). The land mask is stored in the ASCII file and
its name should be provided in the str file mask in the parfile. Note that the mask can
be produced and/or modified using the GM B software (see Appendix Toolbox D.1).
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2l - ===

<!--Time control -

A R

=deltaT value="30"/>

<iterationNumber value="15"/=

<save fTirst date year="1979" month="1"/=>
<save last date year="1983" month="12"/=>

Figure 3.3: Example of a set-up for the time control parameters.

3.4.3 Time control

The time control parameters include the configuration of the time stepping and the simula-
tion time period (Table 3.2). It is not possible to modify time stepping iterationNumber
for a given configuration, as it is determined by the temporal resolution of the forcing fields.
At the same time, the user can modify the starting and the final date of the run, given
that these dates belong to the interval of the forcing data availability. It is advised that
the parameter iterationNumber is kept unchanged, but higher values can be set to improve
the precision of the ADI method. An example of a setup for the time control parameters
is shown in Figure 3.3. Note that the case of a 30-day time stepping (360-day calendar)
is particular, as it corresponds to a virtual 360-day calendar. In this case the day can be
omitted as it is automatically set to 15.

Table 3.2: Setting up the temporal resolution of the numerical method and the time range
of the simulation.

Parameters Description

deltaT The time step in the outer loop of the numerical model, see AT in
(2.4), given in days. It is usually predefined by the time step in the
forcing data.

iterationNumber Number of iterations in the numerical model; it determines the time
step in the inner loop of the numerical model, i.e. the time step of the
ADI method, see n; in (2.5).

save_first_date Starting date of run, can be any date within the time range of the
forcing datasets. The user can specify the year, month and day.

save_last_date Final date of run, cannot be earlier than starting date and outside the
time range of the forcing datasets.

3.4.4 Forcing data

SEAPODYM relies on multiple oceanic variables to describe the environment of mod-
elled species. These include physical, biochemical and biological forcing variables. Some
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of them are three-dimensional, such as temperature, dissolved oxygen (Oz) concentration,
zonal /meridional currents and primary production, while others are two-dimensional, such
as euphotic depth and functional groups of micronekton. These variables are written in
SEAPODY M-specific binary files .dym (Figure 3.1) that can be visualised with GUI soft-
ware called SeapodymView (see Appendix D.1). The format of these DYM files is detailed
in Appendix C.3.1. Note that each file contains the mask and domain information, which
should correspond to the model configuration in the XML parfile.

Physical and biogeochemical forcing data

The physical forcing dataset includes three physical variables: the temperature (in °C), and
the zonal (u) and meridional (v) components of the currents (in m-s~!). The biogeochemical
fields consist of the primary productivity (in mmol C-m~2-day '), the dissolved oxygen con-
centration (in ml-L™'), and the euphotic depth (in m). Prior to being used by SEAPODYM,
these forcing variables are always interpolated to a regular Arakawa A grid with the res-
olution specified by AX and AY and variable values are placed in the centre of the grid
cells. Primary production used in SEAPODYM is vertically integrated throughout the water
column (while mostly non-zero in the euphotic zone), whereas the other three-dimensional
variables are averaged within the three pelagic layers, defined according to the euphotic
depth Z, (see Figure 1.2). The three vertical layers, z = (1,2, 3), are bounded within the
intervals (0, 1.5Zcy), (1.5Zy,4.5Zcy), and (4.5 Ze,, min(10.5Z,, 1000m)) (see Chapter 1, sec-
tion 1.2.1 for more details). Therefore, there are nine files with physical oceanographic data,
three files with dissolved oxygen data and one for the primary production.

In the parfile, besides providing the paths to the directory with forcing data (section 3.3.1
and Figure 3.1) and the names of each file (Figure 3.4), the following flags are set up in
strfile_oxy depending on the availability of the oxygen data: 0 (default) means that the
time series of oxygen with the same time step are used in the simulation, 1 means that the
available oxygen data are monthly climatology, and 2 means that oxygen data have only
four spatial fields, each corresponding to one calendar season (January-March, April-June,
July—September, October—December).

Note that contrary to the previous SEAPODYM-MASS versions, the monthly climatology
variables are no longer used in the model. For technical reasons these variables, as well as
their file names, are kept in the code and can be present in the parfile; however, the program
does not require these files.

Mid-trophic level biomass

The biological forcing of SEAPODYM-MASS consists of six functional groups of micronek-
ton, representing the prey fields of modelled species. The modelling of the mid-trophic
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<l--sea surface temperature--=

<strfile sst value="0GCMname domain sst firstyear lastyear.dym"/=

<!--euphotic depth-->

<strfile vld value="0GCMname domain_ zeu firstyear lastyear.dym"/=

<!--primary production integrated on the three layers--=

<strfile pp value="0GCMname eppley vgpm wmean domain pp firstyear lastyear.dym"/>

<!--dissolved oxygen averaged in each layer-->

<strfile oxy layer0="0GCMname domain 02 L1 firstyear lastyear.dym"
layerl="0GCMname domain 02 L2 firstyear lastyear.dym"
layer2="0GCMname_domain 02 L3 firstyear lastyear.dym"/>

<!--zonal and meridional currents averaged in each layer--=

<strfile u layer®@="0GCMname domain u L1 firstyear lastyear.dym"
layerl="0GCMname domain u L2 firstyear lastyear.dym"
layer2="0GCMname domain u L3 firstyear lastyear.dym"/=

<strfile v layer@="0GCMname domain v L1 firstyear lastyear.dym"
layerl="0GCMname domain v L2 firstyear lastyear.dym"
layer2="0GCMname domain v L3 firstyear lastyear.dym"/>

<!--temperature averaged in each layer-->

<strfile t  layer0="0GCMname_domain_temperature L1 firstyear lastyear.dym"
layerl="0GCMname domain temperature L2 firstyear lastyear.dym"
layer2="0GCMname domain temperature L3 firstyear lastyear.dym"/=

<!--type of oxygen data: ©® for time series, 1 - for monthly, 2 for seasonal-->
<type oxy value="0"/=>

Figure 3.4: The configuration of input forcing variables in the XML parfile using the generic
names (the naming convention is not imposed) for physical and biogeochemical forcing data

files.

functional groups (i.e. micronekton) is done separately by the SEAPODYM-LMTL sub-
model based on the same forcing fields of temperature, currents and primary production.
The six files produced by SEAPODYM-LMTL, one per functional group, contain the po-
tential biomass (in gWW - m~2) of micronektonic organisms as shown in Figure 1.1. These
variables are also written in DYM format. The names of these files are composed from
prefix Fbiom and the names of the micronekton functional groups that are listed under the
frg_name tag in the parfile (see section 3.4.7). Note that a non-conformance of these names
in the forcing directory and the parfile will lead to the runtime error.

Initial conditions

Initial condition, that is, the model state vector at time t,, N(a,to,x,y) in (eq. 1.1), is
the solution of the numerical model obtained for the date preceding the beginning of the
run by one time step. The file with initial conditions, also called the restart file (see also
section 3.6.2) is automatically generated at the end of each simulation and written in the
output directory. The structure of this file, written in the DYM format, is a series of two-
dimensional density fields for all age classes from ag to A+ at time ty. Thus the third
dimension, Zlevel (see Appendix C.3.1), in this file is age and not time. The name of this
file is spname__cohorts.dym, where the species short name spname is declared in the parfile
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R

<!--FISHERY DATA --=

Z) - -=zrzzwsessee=. .

<file catch data>
<nb_files bet="1"/>
<bet filel="bet catch 16T L3move.txt"/=
</file catch_data=

<file frg_data>
<nb_files bet="2"/>
<bet filel="bet LF 14f PO filtered.txt"/>
<bet file2="bet LF 2f P5 EPO normalized.txt"/>
</file frgq_data=

Figure 3.5: Catch and effort data files in the parfile.

under the sp_name tag. In order to be taken into account by the seapodym application,
the initial condition file should be placed into a subfolder called init, and its relative path
should be declared in the strdir_init attribute of the parfile (panel (c), Figure 3.1).

Fisheries data

The anthropogenic forcing is represented by fisheries data, that is, effort-and-catch and
length frequencies. These variables are written in ASCII format (see Appendix C.1) in a
tabular format and not as the two-dimensional fields. This is because the effort and catch
data are usually sparse data. The path to the directory with fishing data (see Figure 3.1)
is specified in strdir fisheries in the parfile. As there are two types of fisheries data,
there are two types of files — one file, spname_catch *.txt, containing the effort and catch
(EC) data and one or more files, spname_LF _*.txt, with length frequency (LF) data (see
Figure 3.5). The formats of these files are detailed in Appendix C.1. Note, if LF data are
stored in multiple files (e.g., coming from different sources with distinct regional structure),
the LF data files must be listed in the parfile in the sequential order of the sampling regions
found in the file headers (Appendix C.1), as filel, file2 etc. (Figure 3.5).

The temporal resolution of EC data should be the same as the resolution of the model,
that is, 7. The spatial resolution of EC data can be different, but unique within a single
fishery (see declaration of fisheries in section 3.4.5). The model application can handle
coarser spatial resolutions of EC data. In the case when it is finer than the model spatial
resolution, the data will be simply summed up within the model grid cell. Currently, the
numerical model accepts only the quarterly and regional LF data.

Topographic index

One more type of input data can be used by SEAPODYM to limit the movement of fish
towards coastal areas with shallow topography. The topographic index is the matrix with real
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RN ————————— T
<!--FISHERY DATA -->
gl - -=============--»

<nb_fishery value="1"/>
<list fishery name=L1 L2 L3 L4 L5 L6 L7 L8 59 510 S11 512 S13 S14 P15 016</list fishery names
<degrade_fishery reso_deg value="5"/=>

<!--Mask for fishery data usage: ® - do not take into account--=
=mask_fishery_sp=>

<bet>1 11111111111111 1=</bet=>
</mask_fishery sp=

<mask_fishery likelihood=
<pet>1111106111111111 0</bet>
</mask_fishery likelihood>

<l--1 - C in metric tones; @ - C in numbers --=
<fishery catch units>1 1 1111111111111 1</fishery catch units>

<mask_fishery no_effort=
<bet=0 0000100606806 1101 1</bet>
</mask_fishery no_effort=

<flex_regstruc value="1"/>

Figure 3.6: Example of the fisheries configuration in the parfile.

values between 0 and 1, which act as multipliers to the habitat index that drives movement
of young and mature adult age classes (see classification in Table 1.1). The small values
of this index indicate the less accessible (shallow) areas, and values ‘1’ indicate no effect of
topography on the habitat and hence movement. The use of topographic index is optional.
In the case when the topography is not considered, the file does not need to be specified in
the parfile. Current reference configurations may include the topographic index generated
with the help of the algorithm in the GMB software.

3.4.5 Fisheries configuration

There are multiple configuration parameters related to the use of fisheries data in simulations
(Table 3.3). They specify the number of fisheries, their short names, the units of catch, the
flags controlling the use of fisheries as the model forcing (fishing mortality), the flag for
catch prediction method, the resolution and the use of each fishery in the likelihood (see
example in Figure 3.6). The fishery short name, or fishery ID, is constructed from the letter
corresponding to the gear code and the fishery index in file spname catch*.txt. For example,
the fishery short name L1 refers to the first fishery in the dataset being the long-line fishery.

Note that the effort and catch data provided on coarser spatial resolutions will be redis-
tributed to the resolution of the model to compute fishing mortality, but used at the original
or even coarser resolution in the catch prediction method. In other words, the predicted



82 SEAPODYM-MASS Reference Manual

catch will either be at the spatial resolution at which the original data were collected, or,
if the option degrade_fishery reso_deg is set to a resolution coarser than the original
fisheries resolution and that of the model, then the resolution of the predicted catch of all
eligible fisheries will be degraded to a specified value. The information about initial and
final spatial resolutions of all fisheries will be printed in the screen log of the simulation.

Table 3.3: Fisheries configuration parameters. The names in the left column correspond to
the names in the XML parameter file.

Parameters Description
nb_fishery Number of fisheries, ny, in the current configuration.
list_fishery_name List of fishery short names of length n;. These fisheries

must be present in file spname catch*.txt.

degrade fishery reso_deg Resolution (in degrees) to degrade fisheries data in the
model predictions only.

mask_fishery_sp A vector of integers of length ns to activate (1) or deacti-
vate (0) fisheries in the model run.

mask fishery likelihood Same as above, but influences the likelihood computa-
tion only. It means that if the fishery is active in
‘mask_fishery spname’, but turned off in this flag, it still
causes fishing mortality, but predicted catch and/or LF of
this fishery are not accounted in the likelihood.

fishery_catch_units A vector of integers of length ny to specify the units of the
observed catch in the fishery: 1 for metric tonnes, 0 for
numbers.

mask_fishery no_effort A vector of integers of length n; to specify which fishery
do not have effort data: 0 if the fishery has effort data,
1 if fishery does not have effort data. The catch removal
method is used for fisheries without effort.

3.4.6 Likelihood function configuration

Regardless of the type of the run (see section 3.5), the likelihood function specified in the
parfile will be computed and the current (cumulative) value will be displayed at every time
step and at the end of the simulation. The negative log-likelihoods are computed and re-
ported by data type in the following order: catch likelihood, length frequency likelihood,
tagging data likelihood and the average stock function. Since this chapter is devoted to a
simulation run with a predefined configuration, this section aims to provide only the short
description of likelihood parameters, configured through the parfile (Table 3.4). For their
meaning and respective function, please read Chapter 4.
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Table 3.4: Likelihood configuration parameters. The names in the left column correspond
to the names in the XML parameter file.

Parameters

Description

nb_step_to_skip

A number of model time steps to skip before starting augment-
ing the likelihood. It is advisable to skip at least one age at
maturity of the modelled species in order to give the model a
time to renew the population biomass based on current param-
eters.

total likelihood

The total likelihood value corresponding to current configura-
tion. Note, this value will be written in the newparfile.xml
created upon finishing the model run, and not in the parfile
that was provided at execution.

like_c_cpue

The flag for using catch or CPUE (catch per unit effort) data
in the likelihood: if ‘0’ the catch is used in the likelihood, if ‘1’
the CPUE.

likelihood_types

A vector of integers of length ny (Table 3.3) for likelihood type
selection for each fishery: concentrated (1), log-normal (2),
Poisson (3), negative binomial (4), zero-inflated negative bino-
mial (5), truncated Poisson (6).

frq_likelihood

A flag to include (1) or exclude (0) the length frequency term
from the likelihood.

tag _likelihood

A flag to include (1) or exclude (0) the tagging data term from
the likelihood.

tag_likelihood_only

A simulation type flag. If this flag is set to ‘1’, then only the
movement model of tagged tuna sub-population density will
be numerically resolved. Use this flag only for tag simulator
or estimation of movement parameters from tagging data (see
Chapter 4).

stock_likelihood

A flag to add the average stock constraint into the likelihood
(8 in eq. 4.23): ‘1’ to include, ‘0’ otherwise.

mean_stock _obs

The average biomass (B in eq. 4.23) over the rectangular
region specified within this attribute. It is used only if
stock likelihood is activated.

likelihood_parameters

A set of negative binomial dispersion parameters, (f; in
eq. 4.18), one per fishery. These parameters are effective (and
can be estimated) only if the 1ikelihood_types are set to 4
or 5 for corresponding fisheries.

prob_zero

A set of negative binomial probability of null observation pa-
rameters (py in eq. 4.18), one per fishery. These parameters are
effective (and can be estimated) only if the 1ikelihood_types
are set to 4 or 5 for corresponding fisheries.
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3.4.7 Dynamic model parameters
Prey model parameters

Some SEAPODYM-LMTL model (Lehodey et al., 1998, 2010, 2015) parameters are used
in the SEAPODYM-MASS model. Besides, SEAPODYM-MASS is designed to run in
predator—prey mode, thus coupling predator and prey dynamic models. However, since
all existing reference models are based on offline coupling, and the fully coupled model is
not regularly maintained in the software, we do not discuss it here. Table 3.5 details all
configuration parameters for micronekton. Note that those SEAPODYM-LMTL parameters
that do not affect SEAPODYM-MASS solution are listed in the parfile only for information
purposes.

Table 3.5: The micronekton configuration parameters in the parfile. Note that SEAPODYM-
LMTL parameters marked with ‘“*” are effective only in the predator—prey coupling mode.

Parameters Description
Tr_max* The maximal time before recruitment to micronekton.
Tr_exp* The slope of temperature-dependent function of recruitment time.

inv_lambda max* The inverse of maximal mortality rate.
inv_lambda_curv*® The slope of temperature-dependent mortality function.

c_pp Conversion constant from primary production to wet weight of
mikronekton.

E Energy transfer coefficient from primary production to trophic level
of micronekton.

nb_forage Number of functional groups. Refers to the number of non-zero
clements in matrix F (eq. 1.5).

source_frg* The coefficients of repartition of energy transfer among functional
groups of micronekton. The sum of six coefficients should always
give 1.

frg name The names of the functional groups of preys (see Table 3.7).

day_layer The index of the daytime vertical layer (0,1,2) of functional group
(see Figure 1.1).

night_layer The index of the night-time vertical layer (0,1,2) of functional group
(see Figure 1.1).

sigma_fcte Diffusion rate (nmi®-day~1).

All six functional groups of micronekton defined in the SEAPODYM-LMTL model should
be declared in the parfile. Attention should be paid to the forage names (frg_name). First,
as pointed out earlier, these names are used in the input files with micronekton densities
(section 3.4.4 and Figure 3.1). Second, they provide the names of model parameters Ej;
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(eq. 1.21) in the parfile, see Table 3.10. It is advisable not to modify these names to en-
sure stability of the model software. The correspondence between forage names and model
notations for the micronekton functional groups is shown in Table 3.6.

Table 3.6: The forage names, the model notations and vertical layer set-up in the parfile.

frg_name epi meso mmeso bathy mbathy | hmbathy
model notation FH F22 F21 F33 F32 F31
day_layer 0 1 1 2 2
night_layer 0 1 0 2 1 0

The following micronekton parameters (Table 3.5) affect the numerical solution of the
SEAPODYM-MASS model. The pair ¢_pp and E are used to compute the wet weight of
plankton (A in eq. 1.8). The diffusion of larvae and small juveniles, which are assumed to have
similar properties to the micronekton organisms, is governed by diffusion rate sigma_fcte
defined in the micronekton model to account for small-scale movements of fish and diffusion
of water masses. Most important is the definition of the vertical structure of the micronek-
ton functional groups, described in the attributes named day_layer and night_layer (Ta-
ble 3.6). These parameters are essential, as they determine key dynamic processes of the
SEAPODYM model, such as movements (via accessibility of predators to prey, habitats and
movement rates) and larval survival. The set-up of these vectors yields the day and night
structure shown in Table 3.7).

Table 3.7: Total biomass density of functional groups of micronekton present during the
day/night in each vertical layer are sums of the rows/columns in matrix F (eq. 1.5).

’ layer name H day H night ‘
epipelagic Fiy Fs + Fo + Iy
upper mesopelagic Fo1 + Fye Fso + Fo
lower mesopelagic || F3; + F3o + F33 Fis

Predator model parameters

The current version of the model software supports only a single-species model, so the value
of the XML tag nb_species should always be set to 1. The species short name, spname,
usually corresponds to the species code of the FAO convention. Note, the species short
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{:I B ——————— -—0
<!--PREDATOR MODEL AGE STRUCTURE--=
2Ll - e - -

<nb_species value="1"/>
<sp_name>bet</sp name=>

<nb_life stages bet="3"/>
<life stage=

<pet=larvae juvenile adult</bet=
</life stage>

=<nb _cohort life stage=
<bet=1 2 82</bet>
</nb_cohort_life stage=

Figure 3.7: The example of the species declaration and configuration of the life stage
structure for bigeye tuna in the parfile.

name provided in nb_species is used throughout the parfile as well as in various model
outputs (file names, headers etc., see section 3.6). For example, the short name ‘bet’ is used
for bigeye tuna (Figure 3.7), and all XML attributes describing species parameters, either
related to its fisheries, to the likelihoods or to the model, have this short name.! Bigeye
model parameters then appear with the following formatting:

<parameter_name bet="value"/>

See other examples in Figure 3.7 and the parfile in Appendix A.2.

Age and life stage parameters

Age and life stage parameters are essential configuration parameters that describe the species’
age and life stage structure as well as its main biological characteristics — maturity, length
and weight at age (Table 3.8). All these parameters are used as predefined constants in the
model, meaning that they do not vary in time and space and currently cannot be estimated.
However, since the age structure plays an important role in the definition of habitats, move-
ment rates, recruitment, mortality and predicted fisheries statistics (eqs. 1.12, 1.19, 1.20,
1.38, 4.2), modification of these parameters can alter model outputs and provide the model
state, which does not correspond to the MLE solution. Therefore it is advisable not to mod-
ify these parameters in the reference configuration without subsequent parameter estimation
(see Chapter 4).

INote, in the case of a short name modification, simply replace all occurrences in the XML file with the
new name.
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Table 3.8: Configuration of the species life stages, age structure, growth and maturity pa-
rameters.

Parameters Description

nb_life_stages The number of the species life stages to be considered in the
model (see Table 1.1 for more details).

life_stage List of names of the life stages (Figure 3.7).

nb_cohort_life_stage A vector of size nb_life_stages giving the number of age
classes by life stage.

sp_unit_cohort A vector of Aa (the size of age class in days) of length n, =
> nb_cohorts_life_stage.

age_recruit Age at recruitment to the exploited stock. It is used solely for
comparison with stock assessment models.

age_mature The age at first maturity (50% maturity). This parameter is

ignored if values of maturity-at-age are provided explicitly for
all age classes.

maturity_age The vector of maturity-at-age estimates (u(a) in eq. 1.12) of
length n,. The values between 0 and 1 give the proportion of
mature adults in each age class.

length A vector of mean fork lengths of fish (¢(a) in eq. 1.14, in cm)
of length n,, estimated in the middle of each age class.
weight A vector of mean weights of fish (w, in eq. 1.15, in kg) of length

ng, estimated in the middle of each age class.

There are a few rules to know with respect to age structure definitions in SEAPODYM.
First, the number of age classes in the larvae cohorts is always 1, whatever the size of the
age classes, Aa. Second, all age classes but the last one, A+, have the same size. It is best
to have Aa = AT; however, the software can manage the cases when Aa > AT, if Aa is
divisible by AT. Note that in the latter case, the ageing dynamics will be computed every
% time steps (see section 2.2.1 in Chapter 2); hence the model’s numerical solution can
be considered valid only at the end of Aa intervals. Third, the young (immature adult)
life stage does not need to be specified in 1life_stage and nb_cohort_life_stage as it
is defined automatically by the maturity vector maturity_age or the age at first maturity
age_mature.

Note, the section devoted to the description of the species age structure may contain
one more vector, called age_compute_habitat, which is not related to the definition of
the species age structure, but can be specified to shorten the runtime of the simulation by
avoiding re-computing habitat values (and hence velocities) until significant change in mean
length occurs between age classes. This can be especially useful in the optimization runs
(see section 4.4).
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MLE parameters

This section describes parameters that can be estimated via the Maximum Likelihood Esti-
mation method. All the dynamic model parameters that can be set as control parameters
in optimization have the following format:

<parameter spname = "value">
<variable min="minimal value" max="maximal value" use="true"/>
</parameter>

where the ‘value’ is the current parameter value in the model, and the minimal and maximal
values are the boundaries within which the parameter is allowed to vary in optimization.
The attribute use="true" activates the use of a given parameter as a control variable in
optimization. Any other word put in the attribute ‘use’ removes the parameter from the
list of control variables. Note that boundary values are designed for the optimization runs,
but they can affect the parameter value in the simulation run as well if (and only if) the
attribute use="true" and the value of a given model parameter lies outside its boundaries.
In this case the software automatically resets the parameter to a value close to the nearest
boundary.

Tables 3.9-3.12 summarise model parameters that can be estimated. These tables are
extensions of Table 1.3 with SEAPODYM dynamic model parameters, providing also the
parfile names' in order to show their correspondence with the mathematical notations in
model 1.1, and linking their set-up (when necessary) with other configuration parameters in
the XML file.

Table 3.9: Species demographic parameters with their notations in the parfile and in
model 1.1, definitions and references.

Parfile name © (Eq.) Description
Recruitment
nb_recruitment r (1.13)  Reproduction rate in Beverton-Holt function, in mo™".

a_adult_spawning b (1.13) Slope parameter in Beverton-Holt function, in Nb/km?.

Natural mortality

Mp_mean_max m, (1.36) Predation mortality rate at age 0, in mo~".
Mp_mean_exp By (1.36) Slope coefficient in predation mortality.

Ms_mean_max ms (1.37) Senescence mortality rate at age 0, in mo—1=%.
Ms_mean_slope Bs (1.37)  Slope coefficient in senescence mortality.

M_mean_range € (1.40)  Variability of mortality rate with habitat index from (1]‘4/-16)

in the worst habitat to M(1 + €)) in the best habitat.

I'Note also, that the names in the parfile are the same as in the SEAPODYM computer code.
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Table 3.9 includes demographic, that is, reproduction and mortality parameters. Note
that there are other model parameters that affect the population size and age composition,
such as spawning habitat (see eq. 1.13) and fisheries parameters (eq. 1.42), but compared
to demographic parameters, the latter have spatial effects and/or additional functions. For
example, spawning habitat parameters can modify the total number of larvae recruited
as well as overall population spatial distribution. Fisheries parameters affecting the total
population mortality also control the model predictions, catch and length frequency.

Table 3.10 describes all habitat-related parameters, for both spawning and feeding habi-
tats (see sections 1.2.2 and 1.2.5). There exist two alternatives for the use of spawning habitat
parameters. First, all habitat parameters can be used independently exactly as presented
in Table 3.10. Second, the assumption that the species’ preferred range and the target tem-
perature are the same as the range and the temperature that are optimal for larval survival
(see Chapter 1, section 1.2.5), can be set up via the XML parameter uncouple_sst_larvae
spname="0" (see also section 3.4.7 below). Thus, assuming that oy = o and Ty = T*, this
set-up reduces the number of model parameters. In this case, parameters a_sst_larvae
and b_sst_larvae are ignored and a_sst_spawning and b_sst_spawning are used in the
equation of spawning habitat index (eq. 1.7) and in the age-dependence of predators’ thermal
accessibility to prey organisms (egs. 1.19 and 1.20).

Table 3.10: Habitat parameters with their notations in the parfile and in model 1.1, defini-
tions and references.

Parfile name © (Eq.) Description
Spawning habitat index
a_sst_larvae o (1.7) Standard deviation in temperature Gaussian func-

tion of spawning habitat, when uncouple_sst_larvae
spname="1" in °C.

b_sst_larvae T* (1.7)  Optimal water temperature for larvae survival, when
uncouple_sst_larvae spname="1", in °C.

alpha_hsp_prey a (1.8) Prey encounter rate in Holling type III function, in
day™!.

alpha_hsp_predator ap (1.9) Log-normal mean parameter in predator-dependent
function, in g/m?.
beta_hsp_predator [ (1.9) Log-normal shape parameter in predator-dependent

function.
Thermal accessibility and age-dependence
a_sst_spawning 0o (1.20)  Standard deviation in temperature Gaussian function

for age 0, when uncouple_sst_larvae=1, otherwise it
becomes ¢ in spawning habitat, in °C.

a_sst_habitat om (1.20)  Standard deviation in temperature Gaussian function
at age A+, in °C.
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Table continued
Parfile name 0 (Eq.) Description
b_sst_spawning To (1.19)  Preferred  temperature for age 0, when
uncouple_sst_larvae=1, otherwise it becomes
T™* in spawning habitat, in °C

b_sst_habitat T (1.19)  Preferred temperature for the oldest adult class A+,
in °C
T_age_size_slope by (1.19)  Allometric power coefficient for thermal preferences at
age.
Ozygen limitation of the accessibility to prey
a_oxy_habitat v (1.18) Slope in the oxygen accessibility function.
b_oxy_habitat O (1.18)  Minimal threshold oxygen value, required by the

predator to access the habitat for foraging, in ml/L.
Micronekton selection parameters

eF_habitat_epi Ey; (1.21)  Contribution of epipelagic forage to the feeding habitat
index.

eF_habitat_meso FEy (1.21) Contribution of mesopelagic forage to the feeding habi-
tat index.

eF_habitat_mmeso  Fy; (1.21) Contribution of migrant mesopelagic forage to the
feeding habitat index.

eF_habitat_bathy  Fjs3(1.21) Contribution of lower mesopelagic forage to the feeding
habitat index.

eF_habitat_mbathy Fj3s (1.21) Contribution of migrant lower mesopelagic forage to
the feeding habitat index.

eF_habitat_hmbathy Fj3; (1.21) Contribution of highly migrant lower mesopelagic for-
age to the feeding habitat index.

Table 3.11 summarises the parameters used to compute species movement rates. It in-
cludes both large-scale seasonal migration parameters, and the parameters of small-scale
movements governed by either spawning or feeding habitat index (see Active random move-
ment and Seasonal spawning migrations in section 1.2.5). The seasonal migrations mecha-
nism is optional. It can be activated (deactivated) by selecting 1 (0) in seasonal_migrations
node. This option is usually set for sub-tropical species such as albacore and bluefin tuna,
which show seasonal spawning dynamics. For tropical tunas such as skipjack, yellowfin and
bigeye, which spawn opportunistically throughout the year once physiological conditions
are met, this option is deactivated. In this case parameters spawning season_start and
spawning season_peak do not affect the model solution.

Finally, the last group of parameters that are subject to estimation from observational
data consists of fisheries parameters. Table 3.12 shows the largest set of parameter that can
be used to define fishing mortality and to predict model catch and length frequency for a
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single fishery. In practice, only part of these parameters is used given the catch prediction
method and the type of selectivity function (read sections 1.2.7 and 4.1.1). The choice of
selectivity function sy (eq. 1.43) is done by fishery via function_type attribute within the
corresponding s_sp_fishery node (see example of parfile fisheries setup in Appendix A.2).
Setting its value to ‘1’ gives the logistic type of selectivity function (type I), value ‘2’ sets the
sigmoid function (type II) and value ‘3’ sets the asymmetric Gaussian function (type III).

Table 3.11: Movement rates and parameters controlling seasonal migrations with their no-
tations in the parfile and in model 1.1, definitions and references.

Parfile name 0 (Eq.) Description
Adult seasonal spawning migrations

spawning_season_peak ¢ (1.33) Mid-date (day of the year) of seasonal spawning
migrations of adults.

spawning season_start g, (1.34)  Critical value of day—night ratio (or day length gra-
dient), o, triggering seasonal migrations. It also
controls the duration of spawning season at each
latitude.
Movement

MSS_size_slope A (1.29)  Slope coefficient in allometric function for tuna ve-
locity.

MSS_species Vin (1.29)  Velocity at maximal habitat gradient and A = 1,
BL/s.

sigma_species o (1.30)  Multiplier for the theoretical diffusion rate %.

c_diff fish ¢ (1.30) Coefficient of diffusion variability with habitat in-
dex.

Table 3.12: Fisheries parameters with their notations in the parfile and in model 1.1, defini-
tions and references.

Parfile name © (Eq.) Description

Fishing mortality
q_sp_fishery qr (1.42)  Constant catchability coefficients for fishery f.
s_sp_fishery ¢r (1.43)  Steepness of selectivity function if type I or II. Stan-

dard deviation if type III is set up.
length_threshold  [; (1.43)  Threshold length if selectivity function of type I. Mean
length if type III selectivity.
right_asymptote pr (1.43)  Asymptotic value of selectivity in type III function.
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Dynamic model options

Here we summarise several options available in the SEAPODYM software to activate different
model mechanisms and/or functional relationships. All these mechanisms and functions
are explained in Chapter 1. Options are set up in the parfile with the help of integer
flags. Their actions are detailed in Table 3.13. See also section 3.4.7, where the options
uncouple_sst_larvae and seasonal_migrations are described.

Table 3.13: Available options in the predator dynamic model.

Parameters Description

seasonal migrations Set to ‘17 if the species does seasonal migrations, ‘0’
otherwise. (see section 1.2.5)

vertical movement Set to ‘1’ to account for the horizontal velocity cor-
rection due to vertical migrations (see section 1.2.5).

cannibalism_juv Leave at ‘0’, not recommended due to weak observ-
ability of early life stage dynamics (see section 1.2.6).

uncouple_sst _larvae Set to ‘1’ to remove the link between thermal

habitat parameters for spawning habitat index and
those for adult habitat-at-age (see egs. (1.7), (1.19)
and (1.20)).

gaussian_thermal_function Set ‘1’ to select a Gaussian function (see (1.17)), oth-
erwise ‘hat’ function for temperature in accessibility
to prey. Currently not used.

food_requirement_in_mortality Activates non-linear density dependent effect in adult
mortality, accounting for intra-specific competition.
Currently not used. It is recommended this be kept
at ‘0" (see section 1.2.6).

Aggregation zones

The aggregation zones can be defined for regional extractions of biomass and catch statistics,
mainly for comparison with Multifan-CL model stock assessment. The extractions over EEZ
(Exclusive Economic Zones) polygons can also be useful in model analyses and validations.
Table 3.14 describes the configuration parameters setting up the regional structure, both
for rectangular regions and EEZs. If nb_region is non-zero then the SEAPODYM output
file SumQArea.txt will contain the biomass by life stage and catch statistics by fishery,
extracted over defined regions (see more details on the SumQArea.txt file in section 3.6.3).
Otherwise, this file will be empty. Likewise, if the number of EEZ areas nb_EEZ is non-zero
and the EEZ mask file is provided (Table 3.14), then the output files, one by EEZ, called
SumEEZ_eezname.txt will be written in the output directory (see section 3.6.3). The mask
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file with EEZ polygons can be generated by the GMB software (Appendix D.2).

The regional structure is usually set up to match the Multifan-CL regions. The attributes
named areaN with N = 0,..., (nb_region — 1) contain the corners of rectangular regions (see
example on panel (a), Figure 3.8). The parameters nb_region_sp_B and area_sp_B allow
the selection of the subset of defined regions. It can be practical to compare the biomass
predictions only in areas observed through fisheries data, which define estimations of a stock
assessment model. If the configuration parameter use mask catch is set to 1, then the
SEAPODYM biomass will be extracted only from the grid cells with total catch (computed
over the simulation time period) exceeding 1% of the total catch over the domain.

The extractions over EEZ areas can be done based on the EEZ mask file, which has
the same format as the landmask file (see section 3.4.2), with the mask being a matrix of
dimensions of model spatial resolution n, x n, containing negative values in the grid cells
inside EEZ or high seas areas. These values should be entered as EEZ IDs to activate EEZ
extractions. Note, the EEZ mask file must contain all values set up in EEZ node. Example
of EEZ extraction set-up is shown on panel (b) of Figure 3.8.

Table 3.14: Set-up parameters for the regional extractions over rectangular or EEZ areas.

Parameters Description
Stock assessment regions
nb_region Number of rectangular regions.
use_mask_catch A flag to activate (1) or deactivate (0) the use of catch mask in

biomass extractions. If ‘1, then only the cells with C{% > 1% of
C'*" will be used in biomass extraction.

areal The IDs and coordinates of 0,..., (nb_region — 1) rectangular
region.

nb_region_sp_B The number of regions selected for modelled species. In sin-
gle species simulations nb_region_sp_B is usually the same as
nb_region.

area_sp_B Vector of indices of considered regions with values from ‘1’ to
nb_region.

Exclusive Economic Zones

nb_EEZ Number of EEZ areas to be used for biomass extractions.

str_file maskEEZ EEZ mask file with negative values in grid cells inside EEZs or
high seas area.

eezN Names and IDs of 0, ..., (nb_eez — 1) EEZ areas provided in the
str_file maskEEZ file.
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AR ——————————— B
<!--AGGREGATION ZONES--=
AR ———————————

<nb_region value="11"/>
<use mask _catch value="0"/>

<area® area id="1" lgmip="120" lgmax="170" ltmin="20" ltmax="50"/>
<areal® area id="11" Llgmin="146" lgmax="170" litmin="10" Lltmax="20"/=>

<nb region sp B bet="11"/>
<area sp B>

<bet=1 234567 89 10 1l</bet=
</area sp B>

(a)
<nb EEZ value="@"/>
<str file maskEEZ value="SP_IPSL mask eez wcpfc.txt"/=

<EEZ=
<eez@ name="New Caledonia" id="-19"/>
<eezl name="Fiji" id="-12"/=
<eez?2 name="Vanuatu" id="-33"/>
<eez3 name="Solomon Islands" id="-29"/=>
<eez4 name="New Zealand" id="-23"/>
<eez5 name="Norfolk" id="-20"/=
<eez6 name="Matthew Hunter" id="-16"/>
</EEZ=

(b)

Figure 3.8: Configuration of aggregation zones in the bigeye model parfile. (a): Rectangular
regions for comparisons with stock assessment models. (b): EEZ areas configuration. Note
that by convention the EEZ IDs are always negative numbers.

3.5 Running modes

The SEAPODYM computer application is not limited to a simulation mode executing numer-
ical resolution of model 1.1. It is the modelling framework that allows running simulations,
estimating model parameters, generating and estimating parameters of habitat indices alone,
running tag simulator or a virgin population model with observed density used to inform
model parameters. There are also additional functionalities necessary in the development
of quantitative models. They include sensitivity analyses, Hessian matrix evaluation and
likelihood profiling. This section explains how to set up available running modes, to run the
application in these modes, and what to expect during the runtime.
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3.5.1 Simulation

The basics of a simulation run are explained in section 3.3.1. At the end of the simulation run,
the parfile named newparfile.xml is written in the run directory and the restart file with
final distributions of modelled density at age (section ?7) is saved in the output directory.
Note that during a simulation run all parameter values are fixed regardless of the declaration
in the use attribute. The exception occurs if the value of a control parameter (use="true")
is outside its boundaries, in which case the parameter value is reset to the value close to
the nearest boundary before the numerical model resolution. The warning appears in the
screen log. This behaviour is coded primarily for the optimization run, but is conserved for
all other types of run.

3.5.2 Habitats

This is another type of a simulation run designed to compute habitats only, either spawning
or feeding for a given age(s). It is executed with a standalone model build as a result of com-
pilation of SEAPODYM source code with the Makefile habitats, providing the executable
binary file called seapodym_habitats. This binary expects the following configuration pa-
rameters to be present in the parfile:

<habitat_run_type="flag" nb_ages="value"/>
<habitat_run_ages> indexl index2 ... indexN </habitat_run_ages>

where the flag ‘0’ activates the spawning habitat simulation and flag=1 activates the feeding
habitat simulation. Since the spawning habitat does not depend on age, only this flag is
taken into account. In addition, the following DYM file accessible from the run directory, in
sub-folder ‘habitats’ should be provided for the spawning habitat simulation:

<spname>_spawning habitat_input.dym.

The time series of spatial distributions in this DYM file are assumed to contain habitat
observations, which will be used by the MLE method in the estimation of spawning habitat
parameters. The temporal dimension and the time interval of the time series in the input
DYM file is required to match the run configuration. Note, if the purpose of this run is
simulation only, the input DYM file does not affect the model outputs. In this case, a ‘false’
input, for example, a softlink to any DYM file with a SEAPODYM variable, can be used.
For the feeding habitat simulation, set the habitat_run_type to ‘1’ and choose the value
to indicate the number of age classes for which the feeding habitats should be simulated.
The attribute habitat_run_ages allows the age classes to be selected, with the indices
corresponding to those of the age classes defined in the parfile (note, count starts at 0).
Likewise, for the feeding habitat simulations, the input DYM files need to be provided as
well in the run directory, sub-folder ‘habitats’. However, in the case of an age-dependent
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feeding habitat, the software will require one file per age class:

<spname>_feeding habitat_input_agel.dym
<spname>_feeding habitat_input_age2.dym

<spname>_feeding habitat_input_ageN.dym.

It is the user’s responsibility to make sure that the input files contain the data for selected
age classes. Then the habitat simulation is run by the command:

seapodym_habitats -s parfile.xml.

and the estimation of habitat parameters is launched by the command:

seapodym_habitats parfile.xml

See more details on the optimization mode below and in Chapter 4.

3.5.3 Density

Just as for the habitat simulation runs, this running mode can be executed by the binary
file compiled with a different Makefile, called Makefile densities and the input data is
required for estimating the parameters based on fitting to the observed (or modelled) den-
sity fields. The input file should contain the aggregated over age dimension density, called
spname_density_input.dym. The simulation run starts by the following command:

seapodym_densities -s parfile.xml,

while the parameter estimation run is activated without any option.

3.5.4 Optimization

As pointed out above, the SEAPODYM application launched without any option will start
the run with optimization. A prompt will appear waiting for a confirmation that the intention
was to run the optimization method. However, the user is strongly advised to read Chapter 4
prior to the use of this running mode. Several caveats related to the use of memory can
lead to the execution problems in the configurations with high resolutions and large model
dimensions, in which case the optimization run may require an increase in volume for memory
allocation.
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If executed successfully, at the end of the optimization experiment the program runs
a simulation run with estimated parameters. The newparfile.xml, written at the end of
this simulation will contain the updated values of the total likelihood function and model
parameters. More details on the execution of optimization runs can be found in Chapter 4,
section 4.4.

3.5.5 Likelihood profiling

This running mode executes the likelihood profiling with respect to two selected parameters.
This mode is activated with the command:

seapodym -p parfile.xml with the following (example) configuration parameters to

be added in the XML parfile:

<hyperspace_projection>
<variables nb="2"/>
<spname name="a_sst_spawning" nsteps="5" />
<spname name="nb_recruitment" nsteps="5" />

</hyperspace_projection>.

In this example, parameters a_sst_spawnin and nb_recruitment were chosen from the list
of control parameters. As a result, the program will split the parameter plane bounded
by values specified by min and max attributes (section 3.4.7) into 25 intervals and run
simulations to evaluate the likelihood within each interval. During the run, SEAPODYM
writes an ASCII file in a matrix format with a header, called hyperproj.out, of the following
format:

v1l.name v2.name

nbpl nbp2
vl.vall vl.val2 ... vl.val.nbpl
v2.vall v2.val2 ... v2.val.nbp2

<nbpl x nbp2 matrix with likelihood values>

where v1 and v2 denote two control variables (model parameters) and nbpl and nbp2 are
the number of points between (min, max) boundaries of each parameter.
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3.5.6 Hessian computation

The Hessian is computed in order to evaluate the uncertainty of estimated model parameters.
This mode is practical only after the convergence of optimization to the set of MLE param-
eters. For the sake of time saving, the computation of the Hessian is not done automatically
after each optimization run, and is launched manually, once the minimum is attained, and
written to the newparfile.xml

seapodym -h newparfile.xml

The ASCII file generated by this run, called Hessian.out, contains the following information:
number of variable parameters, their names, values, likelihood gradient components with
respect to each variable, Hessian determinant, eigenvalues and variance-covariance matrix,
organised as follows:

nvar
names values derivatives
det (H)

eigenvalues
variance-covariance matrix.

3.5.7 Sensitivity analyses

Two types of sensitivity analyses are implemented in the SEAPODYM modelling framework.
These are: i) local sensitivity analysis based on gradient information, computing either the
likelihood function gradient or the gradient of a quadratic function including model predic-
tions only; ii) global sensitivity analysis including evaluation of the first-order sensitivity
indices and the total-effect sensitivity indices (see Chapter 4, section 4.2 for more details).
These analyses can be activated simply by running the seapodym application with options
-sa=FLAG, where FLAG takes values between 0 and 4 to execute one of the following runs:

0: local sensitivity analysis based on evaluation of the gradient of model prediction func-
tion; each run generates a single vector of local sensitivity measures, with number of
elements being the number of parameters;

1: local sensitivity analysis based on evaluation of the gradient of the likelihood function,
thus including both predictions and observations; same as for flag ‘0’ - sensitivity
measures are evaluated for a given parameter value;

3: a series of jitter simulation runs as a part of One-At-a-Time type of global sensitivity
analysis; each run will evaluate the function value multiple times by varying only one
parameter while keeping others fixed;
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4: a simulation run as a part of All-At-a-Time type of global sensitivity analysis; the
outcome of this simulation is simply the output function (usually selected likelihood
term) value.

3.6 SEAPODYM Outputs

A simulation run produces multiple outputs: a series of text ASCII files aggregating predicted
variables by region (see 3.4.7) or all domain, and binary DYM files with 3D (2D space and
time/age) variables. This section provides information on the contents of these outputs.
The formats of ASCII and DYM files are described in Appendix C, sections C.2.1-C.3. The
GUI tool SeapodymView that can be used for manipulation and visualisation of SEAPODYM
input and output files, both binary DYM files and ASCII files with fisheries data, is presented
in Appendix D.

3.6.1 Setting the outputs directory

The path to the output directory is provided in the parfile as follows:
<strdir_output value = "output/">

where the directory called output is the default location of model outputs, which is created
(if not existing) in the run directory. The full path to an existing directory can also be
specified. Note, if the specified directory does not exist, the program will write outputs to
the default location.

3.6.2 Outputs in DYM files

The two-dimensional variables are written in SEAPODYM in binary DYM format. Ta-
ble 3.15 provides a complete list of files, units and writing rules.

Table 3.15: All DYM files generated by a simulation, either by default or at user’s request.

Name Description Units Status
Population density

spname_larve density of the larvae in number of individuals Nb-km™>  default
(NDb) per square kilometer

spname_juvnl density of juveniles (sum of density from age Nb-km™2  default
1 to the last specified age class in juvenile
stage)

Spname_recru density at age of recruitment to the exploited Nb-km™>  default

population
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Table continued
Name Description Units Status
Spname_young biomass density of young (sum of density mt-km™>  default
across all age classes within young life stage)
in metric tonnes (mt) per square kilometer

spname_adult biomass density of adults (sum of density mt-km™>  default
across the adult life stage)

spname_totbm total biomass density (sum of young and mt-km 2  default
adult life stage)

spname_ageN density of age class N. There should be a Nb-km™> on de-
line in the parfile write_all_cohorts_dym mand
value="1"

Fisheries data

spname_Cobs total observed catch in model units mt or Nb  default

spname_Cobs_f observed catch by fishery 'f. There mt or Nb  on de-
should be a line in the parfile mand
write_all fisheries_dym value="1"

spname_Cpred total predicted catch in model units mt or Nb  default

spname_Cpred_f  predicted catch by fishery ’f. There mt or Nb on de-
should be a line in the parfile mand

write_all fisheries_dym value="1"
Movement rates

spname_Vtot_x zonal velocity of the oldest fish (A+ class) nmi-mo~! default
in nautical miles (nmi) per month (mo), in-
cluding both passive (zonal current velocity)
and active (taxis) components. Positive to
the east.
spname_Vtot_y meridional velocity of the oldest fish (A+ nmi-mo™! default
class) including both passive (meridional cur-
rent velocity) and active (taxis) components.
Positive to the north

spname_speed speed of fish in A+ class nmi-mo~!  default
spname_diffusion diffusion rate of the oldest fish nmiZ-mo~! default
Habitat indices
spname_Ha first feeding habitat index of fish in the first 50% default
_maturity maturity age class in adult life stage
spname_Ha_oldest feeding habitat index of fish in A+ age class default

Restart file
spname_cohorts  density of all age classes at a given time step Nb-km™>  default
yyyy_mm (written at the end of a simulation)
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Each file contains a header and the time series of the two-dimensional field (see Ap-
pendix C.3 for details on file format and structure). Hence, the dimensions of the variable
written in the DYM file is Zlevel x Nlat x Nlong where Nlat, Nlong, Zlevel are the latitudinal
and longitudinal dimensions and the number of time steps.

Population density by life stage

For classification of life stages in SEAPODYM see Table 1.1. The population density for
larvae and juveniles is computed as the sum over all age classes within each life stage:

N(t,z,y) :ZN(a,t,x,y)

with N(a,t,z,y) the density of fish of age a in Nb/km® (model units of the state variables),
at the coordinates (z,y) and at time t. Age a is either equal to 0 for larvae, or from 1 to the
last age in juvenile life stage.

For young and adults the biomass density is multiplied by the mean weight, w(a), of each
age class and so the unit becomes mt/ km®. The mean weights can be found in the parfile
(see Table 3.7). So, for the biomass density we have:

N(t,z,y) = Z w(a)N(a,t,z,y)

a

with a € [age_autonomous to age_maturity-1] for young, and a € [age_maturity to AT] for
adults. Note, the numerical solution of model 1.1, that is spatial distributions N(a,t,x,y),
corresponds to the end of the time step (see Chapter 2, sections 2.1.2 and 2.2.2).

Movement rates

The velocity vector components (both passive and active) and the diffusion rate varying with
habitat index are saved only for the last age class, A+. The speed of population density at
age A+ is computed from the advection velocity field v(¢, z,y) = (u(t, x,y), v(t, z,y) as:

V(@,y,1) = y/ult,,)* + v(t, 2, y)’
where u € R, v € R, V € RT, and De R™.

Predicted and observed catches

The predicted catches are computed in the model and written in units defined in the parfile
(see section 3.4.5), hence either in metric tonnes or in number of fish. Note, currently the
model application does not support different units by fishery.
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Habitat indices

Only two habitat files are saved: one at the age of first 50% maturity, and another for
the oldest adults. In order to output habitats for all or selected age classes, use the
seapodym_habitats application (see section 3.5.2).

Restart

The date yyyy-mm corresponding to the last date of a simulation run is stored only in the
file name. Since age dimension is used instead of time in the DYM file, the Zlevel vector
contains age information. This restart file can then be used as the init file( 3.4.4). It is
the user’s responsibility to manage the time stamp of the state vector.

3.6.3 ASCII output files

Here is a list of the ASCII files generated by a simulation:

- SumDym.txt : for every time step of a simulation, total primary production, total
biomass of micronekton groups, total biomass of population by life stage, fishing effort
by fishery, observed and predicted catch by fishery.

- SumQArea.txt: for every time step of a simulation, total population biomass by life
stage and by region.

- SumEEZ_ID.txt: for every time step of a simulation, total population biomass by life
stage and by EEZ.

- spname_MeanVar.txt: spatial mean of mortality, advection and diffusion rates by age
class.

- spname_Spatial Corr.txt: spatial correlation between predicted and observed catch.

- spname_LF_obs.txt: observed length frequency by region aggregated over the whole
time series in 4 quarters and in total.

- spname_LF_Q_fishery.txt: length frequency of catch by fishery and by quarter.

- spname_LF_Q_sum.txt: catch by age, by region and by fishery; quarterly sums for
overall time period.

The following sections describe the contents of each file, while the file structure can be
found in Appendix C.2.
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SumDym. txt
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This file gives the time evolution of model variables aggregated over the entire domain. In
other words, if we denote ¢(z,y,t) the variable of interest, the file contains Y ¢(x,y,t).
x7y

Table 3.16: Configuration parameters and variables written in the SumDym.txt file.

Parameters Description

date The date of the time step given as yyyy-m-d)

tstep The time step

Variables Description

P in C-C The total primary production, in mmol C-m~2 - day ', in the re-
gions bounded by the latitudinal coordinates C' — C. There are
three regions: 10N-45N,10S-10N and 355-10S

P total The total primary production over the area within C'— C' coordi-
nates, in mmol C-m~2 - day '

F_xxx Total biomass in mt of xxx-pelagic functional group of micronek-

ton (among meso, hmeso, epi, bathy, mbath, hmbathy).

B life_stage spname

Total population biomass in mt by life stage (larvae, juvenile,
recruitment, young, adult)

B total spname

Total population biomass in metric tonnes (mt).

effort fisheryID

Effort by fishery, in units provided for fishery with a short name
fisherylID.

obs C_spname

Total observed catch by fishery in mt or Nb

_fisheryID

pred C_spname Total predicted catch by fishery in mt or Nb

_fisheryID

obs CPUE_spname The observed Catch Per Unit Effort by fishery, in units depending
_fisheryID on units of catch and effort

pred CPUE_spname The predicted Catch Per Unit Effort by fishery, in units depending
_fisheryID on units of catch and effort

SumQArea.txt

This file stores the predicted population abundance (either as total number of fish or as total
biomass) aggregated over the rectangular regions defined in the parfile (see section 3.4.7).
The population abundance is calculated for different life stages (for classification of life stages
in SEAPODYM see Table 1.1). Providing the age at recruitment to the exploited stock and
the regional structure as defined in a given stock assessment model, these aggregated outputs
can be used for comparisons with the stock assessment model outputs. The variables in the
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file are detailed in Table 3.17. See the structure of this file in Appendix C.2.2.

Table 3.17: Configuration parameters and model variables written in the SumQArea.txt file

Parameters Description

regional The lon-lat coordinates of the corners of rectangular regions de-
coordinates fined in the area node in the parfile.

life stage The indices of the age classes in each life stage

date Date written as year, month and day columns

Variables Description

spname N life_ stage
region r

Total number of fish by life stage (from larval stage to recruits)
in region 7

Total N life stage

Total number of fish from larval stage to recruits over all regions

spname Blife_ stage
region r

Total biomass of fish by life stage (for immature and mature
adults) in region r

spname B tot.

Total biomass of fish at adult stage (immature and mature com-

region r bined) in region r.
Total B Total biomass of adult fish over all regions
SumEEZ. txt

These files have exactly the same variables as SumQArea.txt, but the EEZ area is used for
biomass aggregation instead of rectangular regions.

MeanVar.txt

This file, used for diagnostics, contains the spatial mean of different two-dimensional fields
computed but not written in DYM files. The contents of the file are listed in Table 3.18.
Each variable is provided by age class, from 0 to the last AT age class.
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Table 3.18: Configuration parameters and variables written in the spname MeanVar.txt file.

Parameters Description

date Written in year, month, day columns

Variables Description

mortality-at-age p Mean mortality rate (mo~') of the species spname at age a,.

speed p Mean speed (nmi-mo~!) of the species spname at age a,.

diffusion p Mean diffusion rate (nmi®- mo~') of the species spname at age a,.

temperature p Mean water temperature (°C) weighted by the population density
at age a,.

Spatial_Corr.txt

The spatial correlations between the observed and predicted catches as well as Student
test probability values are computed at each time step for all fisheries and written in file
Spatial_Corr.txt (Table 3.19).

Table 3.19: Configuration parameters and variables written in the Spatial Corr.txt file.

Variables Description

n Number of values used to compute correlation.

r_fishery spname Correlation between observed and predicted catches by fishery.
prob Student estimation.

CPUE_r_fishery Correlation between the observed and the predicted CPUE by
Spname fishery.

prob Student estimation.

spname_LF_obs.txt

This file gives both the observed catch-at-age and the sum of catch-at-age per fishery, region
and quarter (Table 3.20).
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Table 3.20: Configuration parameters and variables written in the spname LF_obs.txt file.

Parameters Description
Length Mean lengths in age classes, in cm.
Variables Description

f_spname_region r Observed catch-at-age by fishery f and region 7.

sum_f_spname Total observed catch-at-age by fishery f over all regions.

sum_spname_region_r Total observed catch-at-age for all fisheries in region r.

spname_LF_Q_fishery.txt

This file contains the predicted length frequencies aggregated over model age classes (catch-
at-age) per quarter, per fishery and per region (Table 3.21). It has the same tabular format
as the input LF data file (see Appendix sections C.1.2 and C.2.7).

Table  3.21: Configuration  parameters and  variables  written in  the
spname_LF_Q_fishery.txt file

Parameters Description

Fisheries Fishery ID

Regions Region ID

date Date written in the columns Year, Quarter and Month

Variables Description

LF [p] Predicted catch-at-age in number of fish of age a, caught by fishery

in a given region

spname_LF_Q_sum.txt

Together with the file spname_LF_Q_fishery.txt, this file is mostly used for model valida-
tion, as it provides detailed information on the age distribution of catches by fishery, region
and quarterly time intervals predicted by the model. Note, quarter is the time interval at
which the LF data are collected.

The row with the total catch-at-age data corresponding to the mean length [, for quarter ¢
of the column fisheryID_spname_region_r is computed from the sum of the values written
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in the file spname LF_Q_fishery.txt for corresponding date D, region r, fishery f and
quarter g:

> LRy

Delg;nrNF]

Table 3.22: Configuration parameters and variables written in the spname LF_Q_sum.txt
file.

Parameters Description
length The mean length in cm of the age class.
Variables Description
fisheryID Predicted catch-at-age by fishery in number of individuals (Nb)
_sSpname_region_r of age class with mean length [, in region r during quarter ¢
sum_fisheryID Total predicted catch-at-age (Nb) by fishery over all regions during
_spname the quarter ¢
sum_spname Total predicted catch-at-age (Nb) by all fisheries in region r during
_region_r quarter ¢
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Chapter 4

Model parametrisation

Before applying the model to solve fishery management problems we need to be confident of
the reliability of model predictions; hence, we first need to work on achieving the model dy-
namics under tight coupling of model predictions to observations. In the fields of numerical
modelling of physical phenomena in atmosphere and ocean, this is referred to as ‘data assim-
ilation’, and in ecology it is called quantitative modelling; the purpose of both is the same —
to provide the estimates of nature, which are better estimates than can be obtained by using
only the observational data or only the dynamical model (Robinson and Lermusiaux, 2002).
Hence, quantitative modelling relies on integrating as much available data as is necessary
to observe (and constrain) model dynamic processes through all considered dimensions. In
fish population dynamics modelling, we do not directly observe the model variables, that
is, fish biomass, so we cannot use inverse methods to correct the model state as is done in
meteorological or ocean circulation models. Instead, we use inverse methods to compute
the gradient of the function of model parameters and observations with the aim to inform
model parameters from the data, which contains observations for different processes of fish
population dynamics. As an outcome, we want to achieve an optimal model parametrisation
providing the model (i) describes the assimilated data and (ii) remains valid for independent
data sets. The latter can be fulfilled through space—time invariance of model parameters.
Indeed, the SEAPODYM parameters, proper to the modelled species and its physiological
characteristics, do not include dependencies on its environment. In contrast, they describe
the species response to the environment that is included in the model as the forcing data.
This chapter describes methods implemented in SEAPODYM to assist in the development
of quantitative models. These methods, however, should not be considered as ready-to-use
or universal recipes for building quantitative models for the new species with SEAPODYM
as this process involves solving highly dimensional non-linear optimization problems and the
success depends strongly on the amount of observations available.

109
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4.1 Integrating data in a fish population dynamics model

Since SEAPODYM is a spatio-temporal model with age dynamics, describing the entire
population life cycle, it possesses high dimensionality that inevitably requires the use of
massive geo-referenced datasets. For tuna species we use three types of geo-referenced data:
(1) fisheries data, including effort and catch aggregated in time and spatial area; (2) length
frequency sample data provided at usually coarser resolutions, such as season and large
regions; and (3) conventional tagging data including the positions of release and recapture
as well as size characteristics of individual fish. It is important to note here that fisheries
data must account for as close to 100% of fishing mortality as possible (Figure 4.1) to enable
unbiased estimation of population abundance, but it is not required that all fisheries data
are used in the parameter estimation method.
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Figure 4.1: Total annual bigeye tuna catch aggregated from geo-referenced catch (Pacific-
wide) used in SEAPODYM analyses. The dashed line corresponds to total landings of bigeye
tuna (SPC Year Book, 2016).

4.1.1 Effort and catch data

Geo-referenced fishing data include effort and catch by flag, gear and fishing strategy. These
data on tuna and billfish are collected by Tuna Commissions and are publicly available to
a certain level of detail. The following Tuna Commissions contributed to the SEAPODYM
studies: the Inter-American Tropical Tuna Commission (IATTC) for the eastern Pacific
Ocean, the Pacific Community (SPC) on behalf of the Western Central Pacific Fisheries
Commission (WCPFC) for the western and central Pacific Ocean, the Indian Ocean Tuna
Commission (IOTC) for the Indian Ocean and International Commission for the Conser-
vation of Atlantic Tunas (ICCAT) for Atlantic Ocean. The large industrial fishing fleets
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targeting different tuna species use several gears — purse-seine (PS), pole-and-line (PL),
longline (LL) and troll (T). Typically, for tuna species, monthly spatially distributed data
on large-scale industrial and small-scale domestic fishing are available for effort, E fion it
as a number of sets, days fishing or a number of hooks; and catch, C{%,, 4, in weight or
number of fish (see Fig. 4.2), where indices t, f, lon, lat refer to the year-month, fleet, and
geographic coordinates of 1-degree cells.
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Figure 4.2: Spatial distributions of bigeye tuna catches by decade and by gear: longline
(orange), purse-seine (blue), pole-and-line (green), and others (yellow).

Prior to integrating these data into SEAPODYM for parameter estimation, it is impor-
tant to organise them into homogeneous fisheries. The latter are defined in SEAPODYM
by a unique selectivity function, which does not depend on space and time, and by a unique
catchability coefficient, which can only change linearly with time. The linear trend may be
necessary to account for technological advances, affecting the time of searching and volumes
of fish being caught. Spatial and temporal variability in catch is assumed to be driven by
the spatial distributions of fish that are explicitly described by the model. Another source of
variable catchability, oceanographic features such as fronts and eddies, are accounted for as
well through the habitat and movement modelling. The habitat index reflects both thermal
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gradients and the concentrations of prey species, transported and organised into heteroge-
neous spatial structures by ocean currents. Hence, the gradual changes in fisheries, such
as geographic expansion or seasonal displacements of fishing grounds, and the continuous
increase in fishing effort and catch (Figure 4.2) can be successfully integrated. In contrast,
all abrupt changes in fisheries parameters due to changes in fishing strategy and target
species, introduction of regulatory measures, whether seasonal or not, need to be eliminated
by splitting the fleet data. Usually, this information can be derived either from Commissions’
reports, from the provided fisheries descriptions, or by conducting the time series analysis.
Finally, the data with unreliable, partially available fishing effort should also be removed
from fisheries whose data will be integrated within the parameter estimation method. Such
fisheries can be accounted for with the help of the catch removal method described below.

Catch prediction methods

Previous studies with SEAPODYM using fisheries data to inform model parameters indicated
several problems with the use of fishing effort, in particular those for purse-seine gear. Using
fishing effort to predict the catch in each observed spatial position logically results in fish
distributions with the centre of mass shifted to the areas with highest CPUE and the lowest
biomass in areas with the lowest CPUE. The highest CPUE can be due to highest biomass,
but also to lowest effort and in purse-seine data, where the fishing effort, expressed in days,
may include time unrelated to fishing, it is often observed that the CPUE is lowest in
the main fishing grounds, and highest on the edges of the fishing grounds. Fitting the
model predictions by relying on such effort leads to biases and excessive dispersal and hence
overestimation of fish density away from the observed locations, creating a large quantity
of non-observed ‘cryptic’ biomass, which might be unrealistic. The term ‘cryptic’ biomass
was first introduced by Fontenecau (1996) for the fraction of the stock that is unavailable
to fisheries. To avoid such biases, there are two catch prediction methods in SEAPODYM:
the classical Gordon-Schaefer formula and the catch removal method (see also the fishing
mortality section 1.2.7).

The first method is based on the fishing effort. The total mortality of all fish of age a due
to fishing, mp(a), eq. 1.42, depends on the catchability coefficients, ¢y, of fisheries f, their
selectivity, sfq, for the fish at age a, and the observed fishing effort, E;. At every spatial
location and time, the instantaneous total catch C' in number of fish of age a is computed
as follows:

C(a) =mp(a) - N(a) - Asy, (4.1)

where N(a) is modelled density of fish in number of individuals per unit area (Nb/km?),
and A,, is the area in km?. However, observations are available for the large time intervals
and spatial area. Passing to numerical model notations (see sections 2.1.1-2.1.3), we define
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C’?}?}i 7, the total predicted catch in mass units (mt — metric tonnes) by fishery f at outer
time step K and observational grid indices (I, J) as:

Naq

d

CYiry = 4Bk Y Sppwp Y NprigatiAy;, (4.2)
p=0 igelJ

where w,, is the mean weight of fish and N,;; is the density of fish in the p-th age class
and numerical grid indices (7, j). As seen in this formula, the effort data should be provided
at the model’s temporal resolution; however, the spatial resolution of observations can be
retained. It allows the effort to be applied to the model biomass after its aggregation to
the larger area, and the predicted catch to be compared to observed catch at its original
resolution. Note that the prediction of catch rate, that is, catch per unit of effort by fishery,
is straightforward with this catch prediction method. The prediction of catch per unit of
effort at the resolution of observations, CPUE%?II 7, 1s obtained by division of eq. 4.2 by the
effort value, Fyxr,.

Thus, the predicted catch depends not only on the available fish biomass, but also on the
fishing effort, gear catchability and selectivity. Since the selectivity parameters do not vary
in space and time (with catchability either constant or allowed to change linearly over time),
the estimation of population spatial distribution in the MLE approach is essentially driven
by the spatio-temporal variations of the biomass and the fishing effort. Unfortunately, this
approach is correct only in the ideal case, that is, when the fishing effort is well estimated and
fully reported. For gears such as purse-seine, the estimation of fishing effort is problematic
as one should take into account not only the number of sets that were employed after the fish
school had been detected, but also the time the boat spent in active searching. The second
variable is often hard to estimate and usually the effort becomes inflated in the principal
fishing grounds characterised as zones with the highest catches and where the fishing boats
spend more time and is underestimated in the areas, which are rarely visited by the fishers.
As an example, the observed CPUE of purse-seine fisheries targeting free schools of skipjack
tuna are higher outside the main fishing grounds, thus showing a clear density gradient
towards their edges. One can also imagine that using equation 4.1 in MLE in the case
when the catch is highly correlated with the effort will lead to estimating a homogeneous
distribution of biomass. Another problem can arise with the effort of those fisheries that
do not target the modelled species or change the target during their fishing campaign. If
the information about currently targeted species is not contained in the fishing effort, the
biomass estimation becomes biased because zero catch does not necessary reflect the absence
of the non-target species.

To avoid the biases associated with the use of inaccurate fishing effort, another method
was implemented in SEAPODYM. It consists of removal of total (summarised over all fish-
eries) catch in number of fish of a given age class directly from the predicted fish density.
Let us denote Np;; as the population density in number of fish of age class p per unit area at
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the model integration step k% (k=1...n, n — number of iterations in the ADI method);
C’g,?fj = %C’;}?ij is the nth portion of the total observed catch at time interval (T, Tk 1)-
Then the corresponding predicted catch at the ADI method sub-step is computed as follows:

C[I))]sz = min (Cgllc)isﬁ (Npkij 'AxiAy)) . (43)

Note, that according to eq. 4.3 the predicted catch is either equal to or less than the
observed one. The latter occurs only if there is not enough biomass in the model grid cell.
Finally, the predicted total catch is summed up through n ADI iterations and the total value
is attributed to the fisheries f operating in the cell 75 according to their observed ratio in
this cell, that is,

pred C]?gi(z] = pred
s = 5 G, 25
gives the catch by fishery at model temporal and spatial resolutions. So, in contrast to the
first method, this approach requires data redistribution, which is done automatically in the
model software.

Equations 4.3 and 1.44 can be combined with the classical eqs. 4.2 and 1.42 by apply-
ing the Gordon-Schaefer formula to selected fisheries, for which the fishing effort can be
considered unbiased (longline and pole-and-line fisheries targeting modelled species). One
inconvenience of the catch removal approach is that it cannot combine catch data with
different units (e.g., metric tonnes and numbers of fish).

4.1.2 Length frequency data

The length frequency (LF) data are the geo-referenced sample data, including information
on flag, gear, fishing method, temporal interval, region and sampled catch at length (raised
or not), and the total catch by a given fleet. However, these data are usually aggregated
by quarter and over larger areas, for example, 5° x 5°, 5° x 10°, 10° x 10° or larger (see
Figure 4.3). Note, the fisheries structure in LF data must be conformal to that in the effort
and catch dataset.

Length frequency prediction

By definition, the length frequency is the proportion of fish of size £(a) observed in the catch
by fishery f at time ¢ and in region r. Since SEAPODYM is an age-structured model, we need
to redistribute the catch-at-length to catch at the mean length of model age classes, which is
in most cases straightforward as the model age classes usually have a coarser resolution than
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the observed length bins. In discrete space and time notation, the predicted LF, denoted
Qrrd, is computed as follows:

Sfp Z Ef’LijKz]AQElAyJ
red i,j€r
ok = T (4.4)

> Sep > EpijNpkijazay;
p=0 i,JET

where selectivities sy, are described in eq. (1.43), ij € r are the indices of the model grid,
region 7 is defined by observations, Az; and Ay; are grid cell sizes as defined in section 2.1.1.
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Figure 4.3: Typical length frequency dataset comprising distributions of fish sizes in catch
withdrawn in multiple sample regions. The colour on the left-hand side of the map indicates
the mean fork length (FL) of fish caught in each region. The vertical lines on the histogram
show the sampled number of fish at a given size. The solid red line corresponds to the kernel
density estimation for the data sample.

4.1.3 Conventional tagging data

Conventional release-recapture tagging data include information on position, date and size
of the fish upon release and the same information upon fish recapture (Figures 4.4 and
4.5). Tagging campaigns are regularly conducted in the Pacific Ocean by SPC and IATTC
under different tuna tagging programs, which started as early as 1967. In particular, SPC
has conducted several large tagging experiments since the 1980s in the western and central
Pacific Ocean (WCPO). For example, since 2008 SPC scientists deployed about 200,000
conventional tags on skipjack tuna. IATTC and the Japanese Fisheries Agency have been
also very active in tuna tagging in the eastern and north-west Pacific respectively. While
releases are made by fisheries scientists, the recaptures are by fishermen. Usually hundreds
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of tunas are released in a single location, and the spread of recapture locations depend on the
fishing activity. Obviously, only a small proportion of the released fish is recaptured. The
major difference between release and recapture data is its reliability. The data on releases
are fully reported, while recordings of recapture locations and dates as well as the fish size
upon recapture are subject to error. Therefore, special care is needed in preprocessing the
tagging data, that is, verifying the boat positions through Vessel Monitoring System (VMS)
data, and correcting or filling a gap on size information using known growth models for the
species.
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Figure 4.4: Number of skipjack (a) and bigeye (b) tunas that were tagged during conventional
tagging campaigns (size of red circles is proportional to the number of released fish) and
recaptured by industrial fishing vessels. The 1° pixels are coloured with a linear colour scale
from white to blue indicating 0 to 40 and more tag returns respectively.

There are other caveats in the use of conventional data. First, they do not allow observing
of the entire population, but essentially the juveniles and immature adult fish that are
associated with surface schools and can be caught with surface gears. For example, only
juvenile and immature bigeye tunas were tagged and released along the equator (bottom
panels in Figures 4.4 and 4.5). Second, a majority of all tagged tunas are recaptured shortly
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after release. For bigeye tunas, 89% of all recaptured fish were recaptured within one year
of liberty at sea, 10% between one and two years and only 1% after more than two years.
Consequently, with size at 50% maturity being 115 cm, the majority (93%) of recaptures are
still immature tunas. Hence, observing only part of the population may present difficulties
for estimating model parameters responsible for the dynamics of an unobserved fraction of
the population. Third, unknown reporting rates and strong dependence of tag recaptures
on the associated geo-referenced fishing effort make it difficult to rely on these data in the
estimation of natural mortality rates.
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Figure 4.5: Available conventional tagging showing two distinct periods (enclosed by red
and blue lines) in tagging data with different statistical properties of fish distribution. The
histogram and scatter plot on time at liberty show the time at liberty frequency diagram
and the time at liberty of the tags depending on their date of release, respectively. The size
distributions at release and recapture depict the size (age) intervals that are observed by
tagging data.

Conventional tagging data (Figure 4.4) are integrated into the optimization method in
SEAPODYM essentially to improve the estimates of habitat and movement parameters that
are critical to control the overall population dynamics. Therefore, the approach considers
only fish that have been recaptured (see next section for more details), as these are the only
data that contain information about potential movement (Senina et al., 2020b). Nevertheless,



118 SEAPODYM-MASS Reference Manual

compiled datasets of releases and recaptures, provided by SPC and IATTC from different
tuna tagging programs, contain tens of thousands of records on released and consequently
recaptured fish.

For the purposes of reducing computational costs and integrating maximum information
to inform dynamic processes through all model dimensions, it is important to choose the
time period for data to be used by data assimilation methods. The criteria to be followed
in making this choice are (1) the subset covers the time period without large gaps, (2) the
subset does not reduce the observed time at liberty, and (3) the lifespan coverage of tagged
fish is the same as for the whole dataset. For example, the tagging data temporal coverage
and the distribution in terms of mean length and time at liberty illustrated in Figure 4.5
reveal two characteristic periods with massive tagging of bigeye tuna within the 2000-2013
time range, clearly distinguished by the length of released tunas, the positions of release
and the distributions of recaptures. During the first one, from early 2000 to mid-2007, the
mean length of bigeye tuna at release was 77 cm; they were mostly tagged at three release
positions around the equator at 95°W longitude and a few dozen tunas were tagged and
recaptured in the warm pool area. During the second period, from mid-2007 to the end
of 2013, much smaller bigeye tuna, 56 cm on average, were tagged, extending the area of
release towards the central Pacific Ocean. So, providing a better coverage for spatial and
age structure, the second subset of recaptures (2008-2013) constituting 50% of the dataset
(shown in Figure 4.4), panel (b) and in blue in Figure 4.5) is a better candidate for informing
model parameters, while the first can be left for validation.

Movement model for tag prediction

The tagged fish represent a subset of the modelled population,and hence we can apply the
same mathematical equations to describe their spatio-temporal dynamics. The approaches
suggested earlier for Eulerian models (Sibert et al., 1999) or used in the statistical stock
assessment models (see e.g., Hampton and Fournier, 2001) rely on release-recapture data
to inform estimations of both movement and natural mortality parameters. However, this
approach is not practical within SEAPODYM. First, it leads to the augmentation of the
model state vector by a large number of variables to describe the spatial dynamics of a tagged
sub-population within the Eulerian model as we need to separate it into cohorts of fish being
tagged and released at the same time and in the same area (Sibert et al., 1999). Second, tag
reporting rates (the proportion of recaptured tags that are reported by fishermen) are not
known. It means that a large proportion of tags might be recaptured and not reported, hence
providing biased information on natural mortality. Calibrating the reporting rates within
the parameter estimation is difficult because of their variation in space and time. Third,
prediction of tag recaptures in this model depends on the quality of geo-referenced fishing
effort and gear information. If these difficulties are not properly addressed, the information
provided by tags on natural mortality may not ensure unbiased parameter estimation. At
the same time, the main objective of integrating tagging data within SEAPODYM is to
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improve model predictions by adding information on fish movements. Hence, we must focus
on modelling the movement of tagged fish. Since only recaptured tags can be informative of
movement, we use only those released fish that were recaptured and reported. Because fish
movements are essentially driven by the habitat indices based on environmental variables,
the tagging data provide key information to estimate both habitat-related and movement
parameters.

Tags recaptured in the same month (quarter) are aggregated into cohorts. In other words,
instead of defining the cohort by the same origin, it is defined by the same ending, that is,
tags are aggregated into cohorts by their common time of recapture. As one cannot trace
the density in an ADR model, this allows precise accounting for the time at liberty of all
tags. Integration of tagging data within the population dynamic model (1.1-1.3) consists
of adding the model of tag movement that is driven by the same model mechanisms and
parameters. Let Ry(a,t,x),a = ay,, .., a,+, be the density of the kth cohort of tagged fish of
age a, varying between the age at release a,, and age at recapture a,,,, where time at liberty,
7, is known from the recapture data. The variables R; are defined in two-dimensional space
x € Q € R? and the time t € (fo,tr), where t, is the time of release of the first tag in the
cohort k and tg is the time of recapture of all tags in the cohort. The model of movement
of the kth cohort of tag density is based on a system of advection—diffusion equations with
ageing and source terms, zero initial and zero-flux boundary conditions:

O Ry, + 0, Ry, = —diV(V . Rk) + V(DVRk) + g (4.5)
Rk(a7 th I) =0
n-v =n-VR, =0

x€00 x€002

where advection v and diffusion D rates are the same as in the model 1.1, and the source
term 7y (a, t,x) includes all releases of age a into cohort k at time ¢.

The model 4.5 with parameters of the model 1.1, included in the MLE approach, allows
the estimation of movement and habitat parameters of model (1.1-1.3). Obviously, such an
approach does not allow the estimation of natural mortality from tagging data, but presents
several advantages. Due to the precise time at liberty in 4.5, the proposed method allows
significant reduction of the size of the model state vector. When it is not known, for example,
in the classical tag attrition models, the use of tagging data within the Eulerian population
dynamics model implies considering a large number of cohorts of fish aggregated by their
age, position and time of release. The latter leads to an increase of model dimension and
hence the time and memory required by the PDE numerical solver and adjoint method,
making the classical approach too costly. Finally, since the probability of recapturing all
tags is 1 in the model 4.5, this method omits the use of fishing effort, fisheries parameters
and reporting rates to predict tag recaptures by fishers. Hence, it is independent of fishing

data and particularly well adapted to computationally demanding parameter estimation in
the SEAPODYM model.
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Nevertheless, using only reported and recaptured tags, the computational cost of adding
tags in the MLE may increase sharply with the number of tagged cohorts, that is, the
number of equations 4.5. Hence selecting a subset with the same properties as the whole
dataset in terms of spatial, temporal and age coverage, might be practical to reduce the time
interval (¢, tg). The movement modelling in SEAPODYM is driven by the environment and
the behavioural response to the environment, expressed via preferred habitat and movement
parameters, is assumed to be constant over all model dimensions. That is why the estimation
of habitat and movement parameters can be accomplished using the data subset, both in
terms of space and time coverage.

Several difficulties need to be addressed while integrating individual movement data into
the Eulerian model. Although many recapture positions can be checked with VMS data,
the positions of observed recaptures cannot be considered as exact. To account for the
uncertainty of tag recapture distributions, the number of observed recaptures distributed
in two-dimensional space are interpolated using Gaussian kernels. This is necessary not
only to account for uncertainty in reported positions, but also to relax constraints imposed
on density distributions by individual movement. Also, before including in the likelihood,
observed and predicted tags were aggregated into 6° cells over a 3-month period.

A bivariate Gaussian kernel for two independent variables (longitudinal and latitudinal
coordinates) is applied to the observed recapture records to account for their uncertainty and
to obtain smooth density fields of the recaptures that can be compared to the continuous
fields of modelled densities in the likelihood framework:

1 _(e=2p)?®  (v-vp)?

Ke(Tr,yr; 04,0,) = S 203 203 (4.6)
zCy

where xr and yr are the coordinates of tag recapture, the values of o, and o, are related

to the longitudinal d, and latitudinal d, displacements respectively as follows: o, = d:?;%t

and o, = 4/ dgﬁt where At is the model time step and TL is the tag’s time at liberty,
assuming that the individual didn’t move straight between release and recapture positions
(represented by Euclidean distance) but did rectilinear displacements (Manhattan distance).
To avoid values of o, and o, being too small or too big, they are restricted in the interval
bounded below by 100 nmi and the maximal values are computed according to the maximal
theoretical diffusion rate, linked to the size of individual. Finally, each kernel is rescaled to
account for the lost density on land, and monthly distributions of the observed tag recaptures
are represented by the sums of all kernel functions as follows:

Tt
RZZZS - Z KG (xRa,kn yRak;7 O-Cﬂakn Uyak) (47)
k=1

where n is the number of all tags recaptured in month ¢. Note that the age at release a, is
computed for each tag as the inverse of the Von-Bertalanffy growth function a, = VB™!(L°*)
using the measured fork-length, and the age of recapture is then a = a,, + T'L.
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One of the peculiarities of the tagging datasets is that the majority of the tags are
recaptured by fishermen in the proximity of the release positions within the first months. To
avoid informing the model with zero movements it is important to weight the observations
in that likelihood in order to emphasise those that stayed longer at liberty. This can be done
by introducing weights proportional to the time at liberty, computed simply as integrated
time at liberty over all tags in the grid cell:

Wiij = (RObskij : TLk) /> R
k=1 k=1
Also, to account for scarcity of tag recaptures, both observations and predictions are
aggregated to bigger grid cells I.J and over a longer time period g before being included in
the likelihood. We use ¢ = 3 months and 5° x 5° grid cells.

Rui'= 3 (WwRET) iR = 3 (Wihif)
tequjelJ tequjelJ
Note that the described aggregations of tags into bigger time and space strata and the
smoothing of the distributions of tag recaptures using Gaussian kernels are both done auto-
matically by the model software. The sizes of bigger I, J cells as well as the use of Gaussian
kernels can be configured through the parfile (see Appendix A.2).

4.2 Sensitivity of model parameters

Sensitivity analyses are useful tools to reveal which parameters can be estimated from avail-
able data and which cannot. Therefore, it is important to perform sensitivity analysis before
proceeding to parameter estimation. If model predictions are insensitive to some param-
eters, it is unlikely that they will be determined uniquely from available observations and
they should, therefore, be removed from the optimization. Two types of sensitivity analyses
can be performed in SEAPODYM - local and global sensitivity analyses.

4.2.1 Local sensitivity analysis

Sensitivity of model predictions only. The first type of analysis examines how the
predictions of the model are sensitive to its parameters. For this purpose we simply need
to construct a function of the model solution, which represents model predictions (Worley,
1991). Then, the measures of sensitivity can be computed using precise gradients obtained
from adjoint calculations. Since two types of data are assimilated within the model, that is,
catch and length-frequencies, we construct the following functions:

R1 = Z (C]]Z;?Z)2, RQZ Z ( Z;c;elgr)2, r = 1,...,7”Lf. (48)
fKij fpKr
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Then we define two measures of relative sensitivity &;(0?) and &(60?) for corresponding
model predictions and each initial guess parameter 69 as follows:

1 OR 1 OR
&(6) = . z

mon O = B (49

> See chapter 3, section 3.5 for how to run these sensitivity analyses.

Sensitivity measures for model parameters
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Figure 4.6: Log-scaled measures of sensitivity obtained for estimated parameters from three
different experiments, E1, E2 and E3. The values below the dashed line correspond to less
than 5% sensitivity of either predictions (SA-1, i.e., max|{;, &|) or objective function (SA-2,
mazx|s, &) to corresponding parameter. From Senina et al. (2008).

Sensitivity of likelihood function. The second type of sensitivity analysis examines
whether the objective function (which incorporates both predicted and observed data) is
sensitive to model parameters. We compare values of negative log-likelihood at some found
minimum 0 to those evaluated at the boundaries of the parameter space (Vallino, 2000).
We define two further measures of relative sensitivity:

L7 (6" — 66, -e,) — L(8")
L(e")

L7(0" + 66, - ep) — L7(07)
L(e"

where 66), = ), — «9};, 00, = 0}; — 0, and ey is a standard basis vector with 1 in the kth element

and 0 elsewhere.

&(6}) = NAE (4.10)
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Table 4.1: Example of outputs from the sensitivity analyses.

N parameter relative sensitivity
1 Mp mean exp(0) 8.72181

2 Ms mean max(0) —1.11762

3 asst spawning(0) 2.54945 e—10
4 b sst spawning(0) 0.00656738

5  a sst habitat(0) 3.39733e—18
6 b oxy habitat(0)  —1.0208

7 MSS species(0) —0.070417

8  nb recruitment(0) 0.0047095

9

10

For both -sa| | options, outputs are directly shown on the terminal screen at the end of the
simulation and can be recorded in a text file if needed to produce a table (Table 4.1) or
a plot (e.g., Figure 4.6). It is recommended that multiple sensitivity tests are run from
experiments with different initial conditions, time series of simulation, and estimated values
of parameters. This approach will help in detecting persistent patterns, for example, pa-
rameters that show consistently low or conversely really high sensitivity, and, hopefully, the
reason for such patterns. If the problem cannot be solved, for example, by increasing the
period of simulation to include new data or testing a better environmental forcing data set,
then the parameter(s) with low sensitivity should be fixed to their best guess or estimate
and removed from the optimization.

Note that local sensitivity analyses, although fast and easy to run, only provide a partial
representation of observable and non-observable parameters unless the entire parameter space
is explored, which is not feasible as it means exploring the entire likelihood hyper-surface
in n-dimensional parametric space. Another type of sensitivity analysis, global sensitivity
analysis, can be a more practical solution to analyse parameter sensitivity.

4.2.2 Global sensitivity analysis

To evaluate the model’s sensitivity to its parameters, the SEAPODYM model software also
includes global sensitivity analysis (GSA) based on variance methods (Saltelli et al., 2008;
Pianosi et al., 2016). GSA is performed by computing the first-order (‘main effect’) indices
measuring the direct contribution from each parameter to the output variance and the total-
order (‘total effect’) indices measuring the overall contribution from a parameter including
its interactions with other parameters. These indices are computed as follows:
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F _ \4 z[E ~i (L_wl)] T E ~i [V i (L_‘GNZ)]
SF == \(;(L‘) ST == Vf)(L‘)

(4.11)

where E denotes expected value and V denotes variance, L~ is the negative log-likelihood
(see next section), and #.; means varying all parameters but the ith. The main and total
effect indices are useful to rank and to exclude the non-influential parameters respectively.
The S measures the relative contribution of each parameter to the total output variance,
>, SF < 1 for non-linear non-additive models. In other words, when computing first order
sensitivity indices, we measure the direct contribution of each parameter (independent from
the other parameters) to the output variance. The parameter 6; is not influential if and only
if the index S = 0. Having S} > SI" indicates an existing correlation with other parameters.
Hence, total-order sensitivity indices measure the overall contribution from each parameter
to the output variance, thus including interactions between correlated parameters.

According to 4.11, indices S} can be computed in so-called All-At-a-Time (AAT) SA
experiments, that is, randomly sampling all parameters at every model run. The evaluation of
ST requires One-At-a-Time (OAT) SA simulations, in which only one parameter is randomly
varied in a series of model runs while others are fixed. In order to evaluate model sensitivity
to its parameters given the information contained in each type of data, it is good practice
to set up three SA simulation studies with model configurations integrating either catch,
length frequency, or tag recapture data. As an output function, the code uses the negative
log-likelihood functions that are configured for respective type of data.

First, a large number m (usually of order 10*) of AAT simulations can be run in parallel
for each data type with n parameters shuffled randomly (all at the same time) within their
valid ranges, and hence each of m simulation runs has a unique subset of parameters. Second,
the subset of parameters [ << m providing the lowest function values in AAT SA simulations
can be selected to conduct OAT SA simulations. This allows exclusion of the model solutions
that are too far from the optimum and hence unrealistic. Each OAT simulation is configured
as a simulation ensemble, starting with one of the [ parameter sets of length n and performing
n series of runs moving iteratively from the first to the last parameter. For a given parameter,
the OAT run performs k simulations with randomly sampled values within a parameter’s
valid range (one at a time). Note that a number & = 25 is chosen arbitrarily and can
be easily modified in the method’s computer code. In addition, the following algorithm
has been found efficient to subsequently improve the cost function towards its optimum
within OAT simulations, thus combining these sensitivity simulations with the likelihood
profiling technique to obtain another useful diagnostic for a parameter estimation problem
(section 4.4.5). The algorithm consists of starting each ¢ + 1 OAT iteration with the ith
parameter being fixed at a value providing the lowest function among a series of k runs.
Thus, at every iteration, the OAT is moving towards lower function values, except if the
subsequent parameter after being sampled k times could not provide further improvement.
In this case, the initial parameter value, corresponding to the best function value in the
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previous iteration, is retained. Overall, OAT simulations provide n x [ x k function values
and [ x n function profiles of length k.
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Figure 4.7: Sensitivity indices computed for three negative log-likelihood terms depending
on catch, length and tagging data respectively for (top) skipjack tuna(from Senina et al.,
2020b) and (bottom) bigeye tuna(from Senina et al., 2020c). Note the linear and logarithmic
scales for the results in skipjack and bigeye tuna models respectively. Bars correspond to
the first-order sensitivity showing direct contribution of a parameter to the model output
variance, and vertical lines correspond to the total effect sensitivity, including correlations
between model parameters (vertical lines).

Figure 4.7 shows the quantitative results of global sensitivity analysis (both AAT and
OAT) for skipjack and bigeye tuna. Given the model and observations for these species,
integrating fisheries data (catch and length frequency) into the likelihood mainly informs
(provides high sensitivity to) the parameters, which influence the reproduction and mortality
processes (my, 3,, ms, Bs and «,, Br, R respectively, see Table 1.3 for description of these
parameters). Interestingly, for the bigeye tuna model, the length frequency data principally
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controls the estimation of recruitment, especially parameters of the spawning habitat index,
a, and B, that drive the seasonality of spatial distribution of recruits. But this is not the
case for skipjack tuna, where the LF data provide higher sensitivity to mortality parameters
than to those of recruitment. Diffusion and advection rates (o, V) also have relatively high
sensitivity provided by including all three types of data for bigeye tuna, but not for skipjack.
For the latter species, the sensitivity to movement rates is mostly driven by tag recapture
data.

Habitat indices parameters, T, og, Tk, and micronekton multipliers produce almost
no or low change in both model outputs with fisheries data. Another habitat parameter,
the dissolved oxygen threshold O can be estimated well from the bigeye tuna catch data
distributions, with its estimation probably being well constrained by strong gradients in the
spatial distribution of catches around zones with low oxygen content in the upper mesopelagic
layer. For skipjack tuna, primarily occupying the epipelagic layer, which has mostly high
oxygen levels, there is a weaker signal for the estimation of this parameter. These two
results clearly demonstrate that sensitivity to model parameters is driven by data, their
spatio-temporal coverage and the signal they provide to constrain model parameters.

Likelihood profiles for movement parameters, obtained with help of OAT simulations with
skipjack and bigeye tuna models are shown in Fig. 4.8. The presence of shape in profiles
indicates that the model is sensitive to a given parameter. And the opposite, the flatness
and dispersion of profiles, suggests that this parameter is not informed by the data. Profiles
for movement rates in both skipjack and bigeye tuna models clearly show the tendency of
fisheries data to increase diffusivity and reduce directed movement rates, both contributing
to non-zero biomass everywhere in the model domain and low patchiness. The overall pattern
is similar in the two models, although there is a slightly increasing trend in length frequency
likelihood with increasing values of diffusion rate in the bigeye model and a better defined
shape of tagging data likelihood with respect to advection rate, with a minimum located
between 0.5 BL/s and 1 BL/s. Overall, integration of tagging data in the models of skipjack
and bigeye tuna populations enhances observability of movement parameters while modifying
the shape of the likelihood hyper-surface with minimal values towards lower diffusions and
non-zero advection rates. See more results and discussion on likelihood profiles in skipjack
and bigeye tuna models in recent SEAPODYM studies (Senina et al., 2020b,c, 2021).

4.3 Maximal likelihood estimation method

To describe spatio-temporal dynamics of fish populations, SEAPODYM relies on parame-
ters that describe the population dynamic rates and provide links between environmental
variability and intrinsic dynamic processes such as reproduction, survival and movement. In
order to have confidence in model predictions, particularly in the adequacy of the popula-
tion dynamical responses to environmental variability, we need to combine simulations with
quantitative parameter estimation. In other words, we need to inform model parameters,
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Figure 4.8: Likelihood profiles, obtained as a result of OAT simulations for skipjack and
bigeye tuna. The scatterplots for the skipjack model correspond to two sets of simulations set
up for combined catch and length frequency likelihood and for tagging data likelihood. (From
Senina et al., 2020b). For bigeye tuna, each data likelihood term was studied separately
(same results are shown in Senina et al., 2020c). Note, parameter D values correspond to
the highest diffusion rate of largest tunas in the population if habitat is null and parameter
V' is the velocity of density field (in body lengths per second) at highest habitat gradient,
that is VH = 1.
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0, by fitting the model predictions to the observational data. This is done via use of the
maximum likelihood estimation (MLE) method.

The first implementation of MLE in SEAPODYM is described in Senina et al. (2008).
The likelihood function including a new tagging data term is constructed of three observed
variables: geo-referenced catch Cyg;; by fishery f, for the time step K and in the obser-
vational grid cell I.J; length frequency distributions @ sx, in the sampling zone r, and the
spatial distributions of tag returns Ry in quarter ¢ and the grid cell 1 "J" of resolution
defined for the prediction of tag recaptures. The complete likelihood function of unknown
parameters 0 is computed as follows:

L= T[ (L0 Crxrn) - TT (1O Qpicr)) - TT (L(Oum | By ), (412)

fKIJ fKr ql' J’

where parameters 6y, are the subset of parameters of model 1.1, which control the dynamics
of tag model 4.5. The MLE is obtained by solving the following constrained minimization
problem:

0.1 = argmin (L") (4.13)
0<(9.0)
for L_ = —In L. The problem 4.3 is solved iteratively by a quasi-Newton method until the
(L)

conditions defining a minimum are fulfilled, namely =55 ~ 0 and the Hessian matrix is
positive definite H, ;.

4.3.1 Adjoint computer code

Solving the problem 4.3 of function minimization with a gradient method such as a quasi-
Newton requires evaluation of the derivatives of the function with respect to each control
parameter. In addition, the gradient of the negative log-likelihood, %, must be com-
puted to the same accuracy as the L™. In SEAPODYM, we evaluate the function derivatives
with help of adjoint computer code, also called reverse mode differentiation code (see e.g.
Griewank and Corliss (1991)). Direct and derivative code of SEAPODYM is implemented
using the objects and memory control of AUTODIF library (Autodif User’s Manual, 2021),
created by David Fournier (Otter Research Ltd, 1994) for automatic code differentiation.
This library also provides the quasi-Newton function minimizer and parameter scaling algo-
rithm for solving the constrained optimisation problem (see below). The use of AUTODIF
and its capacity for automatic code differentiation facilitates model developments; however,
writing adjoint computer code in order to increase efficiency of computations is always recom-
mended. Thus, the runtime and the memory use can be significantly improved by including
appropriate recalculations of the forward model within the adjoint code, rather than storing
all the intermediate variables in computer memory.
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When writing new or modifying existing adjoint code, because of the change in the
forward code, the resulting analytic derivatives must be verified. This can be done using
the AUTODIF derivative check, which uses the central finite difference as the derivative
approximation:

L(04 + h) — L6, — h)
2h

— VL= O(h?),

that is the discrepancy between each gradient component VL~ obtained by analytic differ-
entiation and its finite difference approximation changes parabolically with step h, varied
from 1075 to 1071

Control variables in optimisation:
1. b sst habitat(0) = 13.4268

2. T age size slope(0) = 1.06455
3. eF habitat epi(0) = 0.745657

4. eF habitat mmeso(0@) = 0.910203
5. eF habitat mbathy(0) = 0.295928
6. MSS species(0) = 0.469338

Initial statistics: 6 variables; iteration 0; function evaluation 0

Function value 1.1059255e+03; maximum gradient component mag 4.,1510e+02

vVar  Value Gradient |var Value Gradient |var  Value Gradient
1 0.23587 -1.75905e+02 | 2 -0.77001 -2.62749e+02 | 3 0.32697 1.38282e+02
4 0.61250 2.58367e+02 | 5 -0.26765 4.15103e+02 | 6 -0.45447 2.20853e+02

guasi-Newton iterations

- final statistics:

6 variables; iteration 16; function evaluation 28

Function value 8.8558e+02; maximum gradient component mag 9.8197e-01

Exit code = 1; converg criter 1.0000e+00

var  Value Gradient |var Value Gradient |var  Value Gradient
1 0.78651 3.56932e-01 | 2 -0.57958 3.91102e-01 | 3 -0.05783 -1.08384e-01
4 0.43575 -3.57419e-01 | 5 -1.68728 9.45632e-01 | 6 -0.58525 9.81975e-01

Estimated parameters:

1. b sst habitat(®) = 15.319

2. T age size slope(0) =

3. eF habitat epi(0) = 0.454642

4. eF habitat mmeso(0Q) =

5. eF habitat mbathy(0) = 0.264148
6

. MSS species(0) = 0.339454

Figure 4.9: Extract from an example optimization run showing the initial and estimated
parameters 6, and the optimization statistics tables: for each parameter the table provides
the value of rescaled parameter 6; and corresponding derivative of the likelihood function.
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4.3.2 Parameter scaling

Parameter scaling is done to keep parameters within the allowed range, defined as parameter
boundaries. Instead of setting penalties to the boundaries of 0, the AUTODIF library
performs a constrained minimization through parameter scaling (see e.g., Bard, 1974; Vallino,
2000). The latter implies that the optimization routine operates in the unbounded parametric
space that is mapped to the bounded one with the transformation:

Hk = 9776 + (Q_k — 97k> (1 + Slnﬂgk> s (4.14)

that is, the variable parameter ¢; can vary from —oo to co while 6 remains within the
imposed bounds. So, parameter scaling is done prior to optimization, which operates 6,
obtained from eq. 4.14 parameters, and at the end of optimization the parameters are rescaled
back to 6 (see Figure 4.9).

4.3.3 Likelihood functions in SEAPODYM

The negative log-likelihood, L~ = —In(L) to be minimized is the sum of three components:
L., the catch data; L;?, the length-frequencies data; and L, the tagging data component.
These components are described below. For simplicity, let us use notations f,a,t,,j,r for
fishery, age, time, longitudinal, latitudinal and regional indices respectively, knowing that
they correspond to data-specific strata defined for each type of observations as described in
sections 4.1.1-4.1.3.

Catch and CPUE likelihoods

Several functions are implemented in SEAPODYM to account for different statistical distri-
butions of the catch data and hence to define likelihood function components. One frequently
used assumption is that observing a non-zero catch event is a rare event and that these ob-
servations are described by a Poisson distribution. In this case the likelihood function is
equal to the Poisson probability mass function, that is:

Cpred tfz] fo;de

L (08]|Co) = tfij , 4.15
( | ) tfl_z[g Cf}]f]' ( )

and the corresponding negative log-likelihood is therefore
- red obs red obs
LC Z (Ctpfz] Ct]l”)U (Cffm ) + lnF(Ct]lc)U )) : (416>
tfijg

The Poisson likelihood is mostly used for the purse-seine fleets targeting the modelled
species (see e.g., Senina et al., 2008). However, this function cannot be used when fishing
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data contain many zeros, which is often observed for the species that constitutes an accidental
catch or is a secondary target for the fleet. In this case, it may be more appropriate to use
other distributions, for example, a negative binomial distribution with zero inflation:

pred

5\ b
tl;(pf + (1 —py) (HZf) . ) it C7r =0,
7]
ObS _ prgd re
L (B\C ) = (Ctofb’f] Bfitpffu > 5 ﬂflcffijd X CfJZ? )

1- - N A ey

tlj;‘[] ( pf) r (chitufijd ) Cobs | (1+/Bf ) (1+ﬁf ) tf”

1—pf tfij*

(4.17)

where the parameters §; and py, are the negative binomial parameters, the former showing
how much variance exceeds the expected value and second is the probability of getting a null
observation. Both are estimated in the optimization process. Correspondingly, the negative
log-likelihoods are

B
= (< pr+ =00 (525)™")) it O =0

tfig

L,= g:, InT(Brpp) +InT (G + 1) + In(By + 1) (5fo +Ceps) = In(1 = py)
ij

T8y + ) — ﬁfuflnwf)) it gy >

(4.18)

pred

where py = % Other available likelihood functions, implemented in SEAPODYM for
catch or CPUE data, are derived from truncated Poisson, negative binomial, exponential,
Weibull, and log-normal probability distributions.

Also, if the normal distribution assumption can be made about the catch or CPUE data,
then the negative log-likelihood function can be defined as the simple least-square function or
as the negative concentrated log-likelihood that is equivalent to the negative log-likelihood for
a normally distributed random variable with minimal variance (Otter Research Ltd, 1994).
For example, for the fisheries, for which the catch removal method is used, we choose the
normal likelihood profile because the errors are proportional to the modelled biomass and
hence can be assumed normally distributed:

- 1

C:

L > (omat—com)”.

2
20—0 f7t7i7]
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Note that there is not much sense in converting catch predicted with the catch removal
method to CPUE, as in this case predicted catch does not depend on fishing effort. Also,
the use of observed catch in the catch removal approach may result in L, = 0 for all fiij
if there is always enough biomass to support the observed catch (see eq. 4.3). Therefore,
another likelihood term, allowing the biomass constraint, is necessary (see section 4.3.3).

Length frequency likelihoods

Note that proportions of catch-at-age given by eq. 4.4 do not depend on fishery-specific
catchability coefficients. Hence, using only LF data in the likelihood, these parameters
cannot be estimated. Two functional forms of likelihoods for LF data are implemented in
SEAPODYM, both based on the assumption of normal distribution of the small-scale LF
observations. The first function gives the following contribution from length frequency data
to the negative log-likelihood:

tm Nf ng np 9
S S (@ -0t (4.19)

t=1 f=la=1r=1

Lo = QUQ

where the proportion at age a in the catch computed from the observed length frequency

obs
data is Q;’ffw = Z]z[?\l;frltr7 l e [l l ) Ntofﬁ is the number of fish of length [ in region r that

belongs to the cohort of age a. The variance aé is assumed to be a constant value set up in
the computer code, which cannot be estimated.

The second type of LF likelihood function uses the formulation proposed by Hampton
and Fournier (2001) for the fitting to the length frequency data. It is called the robustified
likelihood:

obs pred
L;z =05 log (27T <§ftr )) + IZ log(Ts) + > ( falr Qfatlr> , (4.20)
fot,r frat,r 27—ft (gftr + 7)

where the constant s, = QF(1 — Q%5), T = 7 and [ is the number of size

intervals in the original samples (before redistribution to the model age structure). The
term min(1000, Sy;) embodies an assumption on the maximal sample size to be considered
accurate and the constant P assigns how much the variance of the LF sample is greater
than that of the truly random sample of a given size. See more details on this likelihood in

Hampton and Fournier (2001).

Tag recapture likelihood

The contribution to the negative log-likelihood function from the tag recaptures data can be
defined based on the assumption of the number of tag recaptures being normally distributed:
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B e obs 2
L,=wr Y. (RGF —R%) (4.21)
q,1,J

where wg is a constant allowing equal weighting between the different likelihood terms, Rg;id

and R(‘]’?‘} are the number of tag recaptures predicted and observed respectively in quarter
g and coarse resolution cells I.J. Alternatively, the log-normal likelihood can be defined
based on the assumption that tag recapture data are log-normally distributed. Since the
tag recapture data may contain true zeroes, they can be accounted for by adding a small
constant to both predictions and observations, hence leading to the following contribution
to the negative log-likelihood:

L,=wgr )Y, (ln (Rgﬁd + c) —1In (Rg?f, + c))2 : (4.22)
o1,

where the constant ¢ << 1 is currently set up directly in the computer code.

Biomass constraint

Another objective related to the use of catch removal method is to estimate the minimal pop-
ulation stock with an age and spatial distribution that would support the observed catches
given the selectivity of fishing gears. By definition in this method, predicted catch in the grid
cell is exactly the observed catch if the modelled biomass is sufficient to sustain it (eq. 4.3).
In this case the observed catch is simply subtracted from the biomass, and the predicted
catch is equal to the observed. Therefore, predicting biomass above the observed catch in
all strata is optimal with this method, but increasing the biomass to achieve zero error may
lead to an overall model solution that is totally unrealistic. On the other hand, the use of
such predictions in the optimization provides the observability of model parameters from
the grid cells where the predicted biomass is lower than the observed catch. In this case,
the predicted catch is equal to the available biomass, the biomass becomes zero after catch
removal and the contribution to the likelihood becomes non-zero. In order to prevent an
overestimation of the biomass and to facilitate the convergence towards a realistic solution
with the minimal biomass supporting the observed catch, the likelihood must include one
additional term allowing the minimization of the total biomass to the lowest possible levels.
Fitting the predicted to the observed catch then means reducing the local discrepancies in
the case of the lack of biomass. This can be achieved by adding the following contribution
to the negative log-likelihood:

2
5 = (1 Z (NatijWaA:Eiij) — B) s (423)
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where n; is the number of model time steps in the likelihood computation, W, is the mean
fish weight at age @ and B is the mean stock biomass, assumed to be minimal for the whole
domain or a specific part of it. Hence, in the case of using fisheries accounted with observed
catch only, the function to be minimized becomes L~ = —In L + 3, where L includes at
least two other likelihood terms, for example, effort-based catch for selected fisheries and
LF likelihoods, or the LF and the tagging data likelihoods. Given the poor observability
of model parameters from catch data (Figure 4.8), it is essential to use data with good
spatial and species life history coverage to estimate those reproduction, mortality, habitat
and movement parameters that control spatial distributions of population density at different
ages.

The biomass B can be chosen empirically in a series of optimization experiments so that
at any time step and grid cell the exploited biomass >, (SafNujWaAx;Ay;) > O.SCt"il;-S ,
where s,y is the fisheries selectivity. Ideally the level of biomass should always be higher
than the observed catch; however, up to 20% local errors can be allowed because of biases
in the physical forcing, the errors in the fishing data and the coarse spatial resolution of the
numerical model.

4.4 Parameter estimation workflow

The search for a best set of parameters, corresponding to the global minimum is not a trivial
task within complex non-linear models, and requires lots of optimization experiments that
differ in the configuration of model structure, the data to be used in the likelihoods, likelihood
definitions, the set of variable and fixed parameters and finally the initial parameter values.
Here are some brief statistics of optimizations undertaken to achieve the MLE solutions
described in Senina et al. (2020b) with catch and length (CL) and catch, length frequency and
tag recapture data (CLT) for skipjack tuna. About 40 optimization experiments with CLT
likelihood, corresponding to ~ 15,000 function evaluations (FE) in total, 25 optimizations for
CL (= 6000 FE) and 310 optimizations (~ 150 FE by optimization on average) with tagging
likelihood only. Every parametrisation obtained as a result of function minimization, has to
be analysed, the parameter estimates confronted with the best available knowledge about
the modelled species, and the fit and errors and biases evaluated.

This section describes the parameter estimation workflow, covering some aspects of the
optimization experiment set-up and available tools for troubleshooting and additional model
and method analyses in case if the method does not converge or if the MLE solution is not
satisfactory.

4.4.1 Problem dimensionality and memory control

First, to maintain the time of computation at a reasonable level, it is necessary to find a
balance between the number of observations, the size of the domain, the spatial and temporal
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resolution, and the extension of the time series used in the optimization experiment. The
dimensionality of the optimization problem affects the amount of memory needed to store
all intermediate variables for adjoint calculations.

The AUTODIF library controls memory allocation. Three buffers are declared with their
sizes defining the memory for the variables dependent on parameters 6, called dvariables,
and for their derivatives. The names of these buffers in SEAPODYM are: gs_var_buffer —
allocated to store dvariables and all AUTODIF objects declared in the code, cmpdiff buffer
— to store the gradient information as well as intermediate variables used by the adjoint code
for computing derivatives, and gradstack_buffer — to store the information necessary to
calculate derivatives via automatic differentiation. Note that since the adjoint functions are
written in SEAPODYM to compute analytical derivatives, the third buffer is usually kept
small.

It is important that the size of the buffers is set up as large as required to store all
information in the physical memory during the optimization runs. Otherwise, if the size
of the buffer is insufficient, the program will write its contents to the hard disk, into files
cmpdiff.tmp, gradfill.tmp and gradfil2.tmp, which will considerably slow down the program
execution. The indicator of correct configuration of the gradient structure buffers is that
these temporary files have size 0. The amount of memory is declared in the program code, in
function main, by setting the buffer size in the global variables and while declaring a gradient
structure object:

gradient_structure::set GRADSTACK BUFFER_SIZE(gradstack buffer);
gradient_structure::set CMPDIF_BUFFER_SIZE(cmpdif buffer);
gradient_structure gs(gs_var_buffer).

See the AUTODIF documentation (Autodif User’s Manual, 2021) for more details on the
format and the estimation of these buffer sizes.

During optimization, the SEAPODYM software writes the optimization report file in
the run directory named ‘optim.rep’ It is updated upon each successful iteration. This
file contains the intermediate parameter values (without scaling), the function value and
the maximal gradient as well as the execution time per function evaluation. This file is
particularly useful for estimating the total runtime of the optimization experiment. The
rule of thumb is to multiply the number of parameters by three to get the total number of
iterations.

4.4.2 Likelihood configuration

The available likelihood configuration parameters are all listed in Chapter 3, section 3.4.6.
The choice of the likelihood terms is done by setting the flags frq_likelihood, adding or
removing the term 4.20, tag_likelihood, adding or removing the term 4.21, and the flag
stock_likelihood to control the term 4.23. Note that catch likelihoods (defined by fishery)



136 SEAPODYM-MASS Reference Manual

are always active and only the types of these likelihoods can be selected in the configuration
parfile. However, it is possible to exclude certain fisheries from the likelihood computation
via modification of vector mask fishery likelihood. The type of catch variable, that is
the use of catch or CPUE in the likelihood, can be set up via flag 1ike_c_cpue. The average
stock value as well as the region over which this value is computed can be configured in the
parfile (see mean_stock_obs and corresponding regional parameters).

Finally, it is possible to solve optimization problem with tagging data only. This is
activated by the flag tag_likelihood_only. In the latter case only model 4.5 will be solved
for the tagged cohorts defined in the input tagging data files, which are also provided in the
parameter file (see Appendix A.2).

4.4.3 Initial conditions

We distinguish between the initial conditions of optimization, that is the initial parameter
values and the initial conditions of model 1.1, that is the model’s initial state vector.

Initial parameter values

It is important to configure and run multiple optimization experiments starting from different
initial parameter values. This method uses what are called ‘jitter’ optimization runs. The
approach of perturbing the model parameters and restarting the experiment prevents the
model converging towards the local minima, although it is not a rigorous method to ensure
that the found solution is a global minimum. For the latter, it is necessary to use the global
optimization methods such as simulated annealing (Matear, 1995) or a genetic algorithm.

Initial state vector

Regarding the initial distributions of population density, they may also greatly influence
parameter estimation as the model numerical solution depends on them. The sensitivity to
the initial conditions can be evaluated by running several optimization experiments starting
from different initial states. The influence of initial conditions on the results of minimization
can be reduced by skipping the first predictions from being used in the likelihood compu-
tation. The number of time steps to skip is configured by the parameter nb_step_to_skip
in the parfile. The simplest way is to exclude the number of time steps corresponding to
the age at 50% maturity of modelled species, that is the time necessary for the new larval
production to enter the mature stock and the mature stock to be redistributed according
to the currently estimated parameters driving the spatial dynamics. Note that it might be
impractical to skip a long period and hence a large number of observations in the case of long
living species with late maturity. Thus, realistic assumptions on the population abundance
and availability of spatial distributions from previous optimizations might be necessary.
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4.4.4 Role of environmental forcing

The parametrization of SEAPODYM is highly sensitive to ocean forcing. Therefore, a re-
alistic ocean forcing, that is, based on observations, is necessary to drive the population
dynamics. Realistic physical and biogeochemical variables are necessary to explain the ob-
served variability within the large datasets of tuna catches and length distributions, which in
turn reflect changes in fish abundance due to both fishing and the impact of environmental
variability, including ENSO (EI Nino southern oscillation) events.

Constraining the population dynamics of SEAPODYM, environmental data can be viewed
as ‘fixed” parameters, and it is essential that these parameters are ‘optimal’. However, envi-
ronmental forcing is itself modelled data and has biases. In addition, optimization experi-
ments are usually configured with the coarse spatial resolution model, which is characterized
by weak representation of ocean circulation and subsequent biases in primary production
and micronekton densities. For example, the correct temperature variability is of primary
importance to determine seasonal spawning or feeding migrations. A model that is unable
to adequately describe the seasonal migrations because the temperature seasonality and spa-
tial structure have biases in the geographic area being the population spawning or feeding
ground or the area of migration route, will tend to bias parameters of habitat indices and
to extend the overall biomass distribution, if data from a corresponding geographic area
will be used in function minimization. Consequently, it is advisable to exclude from the
likelihood calculation the data associated with the complex current systems if the forcing
data underestimates them, or the data showing highly heterogeneous patterns if the model
spatial resolution does not allow reproducing them. Note that excluding fisheries from the
likelihood function does not mean excluding them from the computation of fishing mortality.
However, each case should be examined in the context of its impact on both the maximum
likelihood estimation and the local mortality rates.

4.4.5 Two-dimensional projection of likelihood function

Sometimes it is useful to explore the likelihood function visually, plotting different projec-
tions of likelihood hyperspace over the pair of selected parameters. This may give a clue
about the observability of a certain parameter, whether the boundaries of the parameter
should be modified, how the penalty function changes the shape of the likelihood, and so on.
Plotting the cost function is also a simple way to visualize the localisation of the solution
found. For example, the likelihood function can have multiple minima and the likelihood
projection plot can reveal the local minimum problem and help to navigate the minimization
experiments further. The numerical instability problems, or the high-mode non-linearity of
model solutions, and/or noisy observations can result in abrupt, spiky surfaces of the cost
function and hence impede the convergence of the minimization method. Figure 4.10 illus-
trates an example of the the cost function having two local minima, with one local minimum
around 10°C for preferred habitat temperature, which is totally unrealistic for yellowfin tuna.
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The two-dimensional likelihood profiling is activated by execution option ‘-p’ (see Chap-
ter 3, section 3.5.5 for details on configuring and running these simulations).
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Figure 4.10: Likelihood projection over two habitat parameters in the yellowfin tuna model.

4.4.6 Identical twin experiments

Demonstrating that a solution found by numerical optimization is a global solution and
not a local minimum is a difficult and well-known problem in all non-linear optimization
problems and data assimilation. Evaluation of the uniqueness of the estimated parameters
is challenging because of the complexity of the ecosystem model, the high dimension of the
objective function and scarcity of available observations (Robinson and Lermusiaux, 2002;
Vallino, 2000). Unfortunately, one cannot prove that minima found by the gradient descend
method are not local minima. Considering the computer time to perform one experiment,
it is also unrealistic to envisage an exhaustive study that would allow us to conclude that
computed solutions are global. It is possible, however, to evaluate the reliability of the
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solutions by conducting so-called ‘identical twin experiments’. They can verify that both
the model and the method allowed the estimation of chosen parameters using the available
number of observations. These tests consist of estimating parameters from artificial data
series constructed from predictions given by the model. If optimization works well with the
model and experiment set-up, then after sufficient perturbation of optimal parameters we
should be able to retrieve them, because they determine a known a priori solution represented
in the artificial data series.
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Figure 4.11: Evolution of control parameters during twin data experiment conducted for the
artificial data simulated with skipjack tuna model configuration. Parameters are grouped
by their sensitivities in descending order. (From Senina et al., 2008).
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Configuring and running the twin experiments with SEAPODYM can be done in the
following steps:

run a simulation with selected set of parameters;

- using the model predictions for catch, length and tag recapture data, create an artificial
data set, with or without adding noise to the data, format the model outputs as the
input data;

- perturb the initial values of the parameters to be estimated in the parameter file;
- run SEAPODYM in the optimization mode until convergence to the MLE solution;

- use the optim.rep output file to check the result and produce plots.

Twin experiments conducted for the skipjack tuna application (Senina et al., 2008) have
shown that the control parameters were successfully recovered with small relative errors
€ < 0.001 due to the computer round-off error. The evolution of the parameters during the
minimization process can be plotted (see figure 4.11) to illustrate how quickly the parame-
ters were recovered, and which parameters are the most difficult to correctly estimate.

4.4.7 Correlations between parameters

To be well determined, the model parameters, i.e. control variables in optimization, must
be independent. However, correlation between model parameters is a common issue. For
example, increase of the larval recruitment rate on one side and increase of the predation
mortality of larvae on the other can provide the same number of recruits, and hence the
simultaneous estimation of these two parameters can lead to biased estimates of the total
population size. If parameters are correlated, the minimization procedure will increase the
number of iterations, leading to an overall increase in the computational time. Establishing
correlations between all model parameters can help reduce the number parameters to enable
their successful estimation, while fixing their correlated pairs at reasonable and meaningful
values.

Correlation coefficients between pairs of estimated parameters can be derived from the
off-diagonal elements of the error-covariance matrix, which is the inverse of the second-order
derivative, or Hessian, matrix:

0*L”

C=H"! with H= ]
7W1 80186]7 7’7] b )

N (4.24)
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where the Hessian matrix H must be evaluated with 0,,.. Numerically, the Hessian matrix
is approximated in SEAPODYM with central finite difference using first derivatives exactly
evaluated by adjoint calculations. It is obtained by running the SEAPODYM software with
option ‘-h’ and the parfile with MLE parameters (see Chapter 3, section 3.5.6 for more details
on the outputs).

It is desirable to study the correlations between parameters ahead of optimization, al-
though in practice it is never the case because the Hessian has to be evaluated at the point
of minimum to ensure the good precision by finite difference method. On the other hand, it
makes little sense to do optimization with all data first, hoping to correctly estimate model
parameters without knowing that they are independent. The best practice is to use the twin
experiment configurations with a priori known solutions and to perform correlation analysis.
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Figure 4.12: Correlation coefficients between skipjack tuna model parameters, showing high
correlations between 1) predation, f3,, and senescence, f,, mortality rates, 2) catchability of
pole-and-line fishery, ¢o, and senescence mortality rate, 3) parameter or, defining thermal
preference range, and the optimal temperature for spawning, 7] as well as between some
catchability and selectivity parameters (From Senina et al., 2008).

4.5 Error analysis

The current SEAPODYM version allows computation of the parameter estimation error in
the vicinity of the found minimum. Obviously, this approach evaluates whether the esti-
mated parameters are well determined at the minima detected by the minimization routine,
which may not be a global minimum. That is why it is important to perform jitter op-
timization runs, perturbing the model parameters and restarting the experiment to verify
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that the model has converged towards the minimum of the experiment. Then, to get the
parameter estimation error, we compute the variance of the estimated parameters from the
error-covariance matrix 4.24 obtained from the Hessian matrix. Note that the Hessian ma-
trix H must be evaluated with 0,,., that is at the minimum of the negative log-likelihood
function.

The diagonal elements of the variance-covariance matrix C provide estimates of the
variance of the optimal parameters. From the variance we derive the standard deviations,
providing the measure of uncertainty on the parameters estimates. Small uncertainty is an
indicator that the parameter was well estimated from observational data given the found
minimum. Large uncertainties obtained in this error analysis are good indicators of poorly
determined (poorly observed) parameters.

4.6 Model validation

The validation of model solutions can be done via the following steps:

o evaluation of the improvement of the fit to the data due to optimization;

 analysis of model dynamics under estimated parameter values;

« measuring the fit with the optimal solution to an independent dataset.

To measure how well the model describes the data used in optimization and how well
it fits to the independent data, we can use three statistical metrics: (1) the coefficient
of determination r? (squared Pearson correlation coefficient), reflecting the percentage of
predicted variability that is consistent with observations; (2) the standard deviation ratio
0rel, that is the ratio between standard deviations of model predictions and those of data;
and (3) the normalised mean square error, NMSE (eqs. 4.25-4.27). The best score is 1 for
r? and SDR, and 0 for NMSE. Note, these metrics can be computed and compared between
different model predictions for: (1)R — tag recaptures, (2) C' — catch predicted by the catch
removal method, and (3) EC — catch based on the fishing effort. Note that to compute the
scores for EC, the catchability parameters must be estimated for those fisheries that are
used in optimization with the catch removal method.
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Taylor Diagram
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Figure 4.13: Taylor diagram providing three aggregated validation metrics of model fit to
the data: 1) correlation shown in angular coordinates, 2) standard deviation ratio %,
shown as a distance from (0,0) point, that is depicted on both, horizontal and vertical axes,
and 3) the normalized mean squared error shown as a distance from the best score (1,1,0)
depicted by concentric circles. Each filled or empty shape on the Taylor diagram corresponds
to three metrics corresponding to the fit by a given model (letters before dash) to a given
data (letters after dash): CL (same as E1) denotes the MLE model obtained with catch
and length frequency data only, CLT - MLE model with catch, length frequency and tag
recapture data, C and EC mean that the fit is measured for catch predicted with catch

removal and effort-based methods respectively (From Senina et al., 2020b).
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Let x denote the set of observations and y the model predictions of length N. Statistical
metrics are computed and plotted on a Taylor (Taylor, 2001) diagram (Fig 4.13) as follows:

2\ — (4.25)

SDR = o,/0, ' (4.26)
<zlv %1((;;5—@ —(y— 7)) )2

NMSE = ~=

(4.27)

where 0, and o, are the standard deviations of observations and predictions respectively, x
and y are the means, and NMSE is the centred root-mean-square error normalized by the
standard deviation of the observations.

Note that the independent data are the data that were not used in the likelihood. We
can extend the data time series simply by including several years of data left out for valida-
tion, and then to compute the validation scores. However, it is often hard to leave enough
data to validate a highly-dimensional model. The best validation of the model with spatial
dynamics is its application to a large independent set of data both in time and space and in a
comparison with the baseline. An example illustrating this method is described in the recent
SEAPODYM study (Senina et al., 2020a). The MLE solution obtained for the South Pacific
albacore population was applied to simulate the dynamics of the Atlantic stock. Taking into
account that the model with optimization performs well on the data that were used in the
objective function and usually outperforms the model that was specialized on a different
set of data, the MLE was also obtained using the Atlantic Ocean fisheries data. The valid-
ity of the South Pacific model was then demonstrated by comparing the statistical metrics
computed for its predictions for the Atlantic Ocean population with those computed for the
predictions of the Atlantic (baseline) MLE model.
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Appendix A

Inventory of model variables and

input parameters

A.1 Selected notations

Table A.1: Model variables, notations and units as used in the model code. Note, all nota-
tions in this table are given for the model configuration with monthly temporal resolution.
The units in bold mean that the variable has a different unit as an input variable. In this
case see text in the Definition column. Abbreviations used: m - meter, nmi - nautical mile,
d - day, mo - month, Nb - number of individuals, mt - metric tonne.

Symbol

Definition

Units

Spatial domain

Q,00

LY
z

two-dimensional model domain and its complex boundary de-
fined by the land mask

spatial coordinates in two-dimensional model domain
vertical coordinates, giving depth of three pelagic layers: (1)
0—15X Zey, (2) 1.5 X Zoy — 4.5 X Zy, and (3) 4.5 X Zoy —
min (10 X Z,,, 1000m)

digital (°)

Environmental data

VZ(t7 ‘1.7 y)

T.(t, x,y)

O.(t,z,y)

vector (u,v) of horizontal currents, averaged over vertical
layer 2 (OGCM modelled data), it has units of m-s™! in the
input file

water temperature (OGCM modelled data), averaged over
layer z

concentration of dissolved oxygen, averaged over vertical layer
z (BGCH model or Levitus database)

nmi-mo-

°C

ml-171

147
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Table A.1 continued
Symbol Definition Units

P(t,z,y) vertically integrated primary production (either output of o1 ¢
BGCH model or VGPM model based on satellite-derived Chl- m’mo
a data), input data have units mmol C-m~2-d~!

Coupled ADR model variables

F., .. (t,x,y) density of functional groupw of micronekton (food for tunas) 9
living in pelagic layer z; during daytime and migrating to gm
layer z,, during night time

N(a,t,z,y)  density of tuna population at age a, time ¢ and spatial position Nb-km™2
(z,y)

Environmental (habitat) indices

O(a,z,y,z) accessibility of tuna of age a to the vertical layer z

Hq(t,x,y) spawning or larvae’s habitat index

H;(t,z,y) juvenile’s habitat index

H,(a,t,z,y) adult’s (feeding and movement) habitat index

Advection-diffusion-reaction parameters

v(a,t,z,y) vector field of total tuna density velocity nmi-mo-—

ve(a,t,z,y)  vector field of ocean currents computed as weighted average nmi-mo~
through all pelagic layers with weights being accessibility to

the layers

vy(a,t,x,y) vector field of tuna density active velocity towards a gradient nmi-mo~*
of stimuli

D(a,t,z,y) diffusion coefficient, measuring the rate of density dispersal nmi?-mo~!
due to random movements

M(a,t,z,y) total mortality due to fishing mp and natural causes my mo !

Optimization variables

Cy total catch by fishery f mt

Qyr proportion of length frequencies for fishery f and region r

Ry density of tagged individuals in the population, which belong Nb-km—2

to k-th cohort

catch data contribution to a negative log-likelihood

LF data contribution to a negative log-likelihood

tag recaptures contribution to a negative log-likelihood
total negative log-likelihood function

Hessian matrix

Iy 1o 'a !

SESTSEs

T
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A.2 XML parfile

An example of SEAPODYM XML parameter file for bigeye reference model configuration
with only five fisheries and tagging data with 14 cohorts of tagged and recaptured tunas.

<?xml version="1.0"7>
<par version="1.0">

<l— —_—>
<!——SIMULATION PARAMETERS—>
<!—= —_

<latitudeMin value="-54.875"/>
<latitudeMax value="65.125"/>
<longitudeMin value="88.375"/>
<longitudeMax value="290.375"/>
<space_reso value="2"/>

<nb_layer value="3"/>

<deltaX value="120"/>

<deltaY value="120"/>

<deltaT value="30"/>

<iterationNumber value="30"/>

<tuna_ spinup value="0"/>

<save_ first_date year="1998" month="1"/>
<save_last_date year="2009" month="12"/>
<nb_yr_forecast value="0"/>
<nb_step_to_skip value="36"/>

<!—= —_
<!——LIKELIHOOD PARAMETERS—>
<l—= —>

<tag_likelihood_only value="0"/>

<l——type of data in the likelihood: 0 — cpue, 1 — catch —>
<like_c_cpue value="1"/>

<total_likelihood value="1375175.761915711"/>

<l——likelihood types: 1 — concentrated, 2 — log—normal, 3 — poisson, 4 —
negative binomial, 5 — zero—inflated negbin, 6 — truncated poisson —>
<!——can be different for each fishery (see below the fishery codes) —>

<likelihood__types>
<bet>3 3 3 3 1</bet>
</likelihood types>

<nb_ fishery value="5"/>
<list_ fishery_name>L1 L2 L3 L4 L5</list_fishery_name>

<!——1 — C in metric tones; 0 — C in numbers —>
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<fishery_catch_units>1 1 1 1 1</fishery_catch_units>
<degrade_ fishery_reso_deg value="5"/>

<!l——Mask for fishery data usage: 0 — do not take into account—>
<mask_fishery sp>

<bet>1 11 1 1</bet>

</mask_ fishery_sp>

<mask_ fishery_no_effort>
<bet>0 0 0 0 1</bet>
</mask_ fishery_no_ effort>

<mask_ fishery_ likelihood>
<bet>1 1 1 1 1</bet>
</mask_fishery likelihood>

<l——length frequencies likelihood: 0 — do not take into account, 1 — account
—>
<frq_likelihood bet="0"/>

<!I——TAG likelihood: 0 — do not take into account, 1 — account—>
<tag_likelihood bet="0"/>

<l——STOCK likelihood: 0 — do not take into account, 1 — account—>
<stock_ likelihood bet="1"/>

<!—— The values entered for mean_ stock obs will be used in stock likelihood
These can be the total abundance estimated by stock assessment models
within the rectangular region specified —>

<mean_stock obs>
<bet value="1500" lgmin="110" Ilgmax="210" ltmin="-40" ltmax="50"/>
</mean_stock_obs>

<!—= —>
<!——MODEL INPUT-OUTPUT—>
<l—= —>
<!—— Forcing data directory —>

<strdir value="/data/run—freeglorys —2x30d—1998—-2019—po/"/>

<!—— Micronekton density files within forcing directory —>
<strdir_forage value="forage/"/>
<l—— Model initial state directory containing bet_cohorts.dym —>

<strdir_init value="init/bet/19971215/e27.1_clt/e27.1.M/F0/"/>

<!—— Land mask and topographic index files —>
<str_ file__mask value="mask freeglorys 2deg corrected nolO.txt"/>
<str_ file_topo value="topo_ noteff.txt"/>
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<l——type of oxygen data: 0 for time series, 1 — for monthly, 2 for seasonal—>
<type_oxy value="1"/>

<l—— Forcing data filenames —>

<strfile_pp value="po_ freeglorys2v4 rxd 2x30d_pp 1998 2019.dym"/>

<strfile__sst value="po_ freeglorys2v4_2x30d_SST_1998_ 2019 .dym"/>

<strfile_vld value="po_ freeglorys2v4_ rxd_2x30d_zeu_1998_ 2019 .dym"/>

<strfile_u layer0O="po_ freeglorys2v4d rxd_2x30d_U_L1_1998 2019.dym" layerl="
po_ freeglorys2v4 rxd_ 2x30d_U_L2 1998 2019.dym" layer2="
po_ freeglorys2v4 rxd 2x30d_U_L3 1998 2019.dym"/>

<strfile_ v layer0="po_freeglorys2v4 rxd 2x30d_V_ L1 1998 2019.dym" layerl="
po_ freeglorys2v4d rxd_2x30d_V_L2 1998 2019.dym" layer2="
po_ freeglorys2v4 rxd 2x30d_V_ L3 1998 2019.dym"/>

<strfile_t layer0="po_ freeglorys2v4_ rxd_ 2x30d_temperature L1 1998 2019 .dym"
layerl="po_ freeglorys2v4 rxd 2x30d_temperature L2 1998 2019.dym" layer2="
po_ freeglorys2v4_rxd_2x30d__temperature_L3_1998 2019 .dym"/>

<strfile_oxy layer0="po levitus WOA2013 2x30d 02 L1 CLM.dym" layerl="
po_levitus. WOA2013_2x30d_02_L2_ CLM.dym" layer2="
po_levitus. WOA2013 2x30d 02 L3 CLM.dym"/>

<strfile _pp_clm value="po_ freeglorys2v4d rxd 2x30d PP 1980.dym"/>

<strfile_u_clm layer0="po_freeglorys2v4d rxd 2x30d_U_L1 1980.dym" layerl="
po_ freeglorys2v4 rxd 2x30d_U_ L2 1980.dym" layer2="
po_ freeglorys2v4_rxd_2x30d_U_L3_1980.dym" />

<strfile_ v_clm layer0="po_freeglorys2v4 rxd 2x30d_ V_ L1 1980.dym" layerl="
po_ freeglorys2v4 rxd 2x30d_V_L2 1980.dym" layer2="
po_ freeglorys2v4 rxd_ 2x30d_V_ L3 1980.dym"/>

<strfile_t_clm layer0="po_ freeglorys2v4_ rxd_ 2x30d_temperature L1 1980 .dym"
layerl="po_ freeglorys2v4 rxd_2x30d_temperature L2 1980.dym" layer2="
po_ freeglorys2v4 rxd_2x30d_temperature L3 1980.dym"/>

<strfile _oxy_ clm layer0="po freeglorys2v4 rxd 2x30d 02 L1 1980.dym" layerl="
po_ freeglorys2v4 rxd_ 2x30d_02_ L2 1980.dym" layer2="
po_ freeglorys2v4_rxd_2x30d_02_L3_ 1980.dym"/>

<!——FISHERY DATA —>
<strdir_fisheries value="/data/fisheries/bet/ds2020/"/>

<file catch data>
<nb_ files bet="1"/>
<bet filel="bet_catch_20f_L3cor.txt"/>
</file__catch_data>

<flex_regstruc value="1"/>
<file_frq_data>
<nb_files bet="2"/>
<bet filel="bet LF_ LL 11f PO.txt"/>
<bet file2="bet LF PS PL OT 9f PO.txt"/>
</file_frq_data>
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<!—-—TAGGING DATA —>
<strdir__tags value="/data/tags/ds2016/"/>

<tags_ grid>
<reso dx="6" dy="6"/>
<longitude east="110.375" west="290.375"/>
<latitude south="-30.625" north="29.375"/>
</tags_ grid>

<file_tag data>
<nb_ files bet="14"/>
<bet filel="bet—pop—tags 20080715.txt" file2="bet—pop—tags 20080815.txt"
file3="bet—pop—tags_20080915.txt" filed="bet—pop—tags_ 20081015.txt"
file5="bet—pop—tags_20081115.txt" file6="bet—pop—tags_20081215.txt"
file7="bet—pop—tags_20090515.txt" file8="bet—pop—tags_20090615. txt"
file9="bet—pop—tags_20090715.txt" filel0="bet—pop—tags_20090815.txt"
filel1="bet—pop—tags_ 20090915.txt" filel2="bet—pop—tags 20091015.txt"
file13="bet—pop—tags_20091115.txt" filel4="bet—pop—tags_20091215.txt"/>
</file__tag_ data>

<!l—— OQOutput Directory and writing options —>
<strdir__output value="output/"/>
<write_all_fisheries_dym value="1"/>
<write_all cohorts_dym value="1"/>

<l—= —>
<!——FORAGE MODEL PARAMETERS—>
<l—= —>

<Tr_max value="527"/>

<Tr_exp value="-0.125"/>
<inv_lambda_max value="2109"/>
<inv_lambda_curv value="-0.125"/>
<E value="0.0036972"/>

<c_pp value="0.0948"/>

<nb_ forage value="6"/>

<frg_name>epi meso mmeso bathy mbathy hmbathy</frg name>

<source_ frg epi="0.08" meso="0.17" mmeso="0.08" bathy="0.56" mbathy="0.07"
hmbathy="0.04"/>

<day_layer epi="0" meso="1" mmeso="1" bathy="2" mbathy="2" hmbathy="2"/>

<night_layer epi="0" meso="1" mmeso="0" bathy="2" mbathy="1" hmbathy="0"/>

<tstep_forage value="30"/>
<sigma_ fcte value="100"/>
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<max_NPP value="200"/>
<b_F_habitat value="20000"/>

<l—= —>
<!——PREDATOR MODEL AGE STRUCTURE—>
<l—= —>

<nb_ species value="1"/>
<sp_ name>bet </sp_name>

<nb_life stages bet="3"/>
<life_ stage>

<bet>larvae juvenile adult</bet>

</life stage>

<nb_ cohort_life stage>
<bet>1 2 82</bet>
</nb__cohort_life_stage>

<age_ recruit bet="3"/>
<age_mature bet="35"/>

<sp_ unit_ cohort>

<bet >30 30 30 30 30 30
30 30 30 30 30 30
30 30 30 30 30 30
30 30 30 30 30 30
30 30 30 30 30 30
30 30 30 30 30 30

</bet>
</sp_ unit_ cohort>

<!——Just for info, the mean age (in
<l——age =1 3 5 7 9 11 13
35 37
39 41 43 45 47 49 51
73 75
7779 81 83 85 87 89
—>
<maturity age>
<bet >0.0000 0.0000 0.0000 0.0000 O
0.0001 0.0002 0.0004 0.0007 O
0.0136 0.0199 0.0289 0.0378 0
0.2240 0.2702 0.3164 0.3647 0
0.6792 0.7149 0.7461 0.7727 0
0.9051 0.9170 0.9270 0.9370 O
0.9806 0.9840 0.9875 0.9904 0
0.9996 0.9999 0.9997 0.9992 0
0.9903 0.9882 0.9859 0.9836 O

30 30 30 30 30 30 30
30 30 30 30 30 30 30
30 30 30 30 30 30 30
30 30 30 30 30 30 30
30 30 30 30 30 30 30
30 30 30 2520

month) of each age class —>

15 17 19 21 23 25 27 29
53 55 57 59 61 63 65 67
91 93 95 138

.0000 0.0000 0.0000 0.0000 0.0000
.0011 0.0018 0.0030 0.0042 0.0066
.0519 0.0712 0.0905 0.1169 0.1505
4149 0.4651 0.5128 0.5579 0.6030
.7993 0.8223 0.8415 0.8608 0.8774
.9456 0.9527 0.9599 0.9661 0.9712
19926 0.9948 0.9964 0.9976 0.9987
19987 0.9978 0.9966 0.9954 0.9939
.7300

31

69

SO OO OO oo

30
30
30
30
30

33

71

.0000
.0101
.1841
.6434
.8912
9763
.9994
L9921

153

30
30
30
30
30
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</bet>
</maturity_age>

<!l——Optional: if active, vector age_compute_habitat gives the sequence number
of
updates of feeding habitat and movement rates. For instance, in this
parfile
these internal variables will be computed (updated) only 32 times instead
of
85, i.e. the number of age classes—>
<l——
<age_compute_ habitat>
<bet>0 1 2 3 4 5 5 6 6 7 7 8 8 9 910 10 11 11 12 12 13 13 14

14
15 15 16 16 17 17 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24
24
24 24 25 25 25 25 26 26 26 26 27 27 27 27 27 28 28 28 28 28 29 29 29 29
29
29 30 30 30 30 30 30 30 31 32
</bet>
</age__compute_habitat>
—>
<!——mean length (cm) of individuals in each age class—>
<length>

<bet>9.12 13.55 17.88 22.10 26.21 30.22 34.14 37.95 41.68 45.31
48.85 52.30 55.67 58.95 62.16 65.28 68.33 71.30 74.20 77.03
79.79 82.48 85.10 87.66 90.16 92.59 94.96 97.28 99.54 101.74
103.89 105.98 108.02 110.02 111.96 113.85 115.70 117.51 119.26 120.98
122.65 124.28 125.88 127.43 128.94 130.42 131.86 133.26 134.63 135.97
137.27 138.54 139.78 140.99 142.17 143.31 144.44 145.53 146.60 147.64
148.65 149.64 150.61 151.55 152.46 153.36 154.23 155.08 155.92 156.73
157.52 158.29 159.04 159.77 160.49 161.18 161.86 162.53 163.17 163.80
164.42 165.02 165.61 166.18 180.93

</bet>

</length>

<!——mean weght (kg) of individuals in each age class—>

<weight>

<bet >0.02 0.05 0.12 0.23 0.39 0.59 0.86 1.18 1.57 2.02
2.53 3.11 3.76 4.47 5.25 6.09 6.99 7.95 8.97 10.04
11.17 12.34 13.57 14.84 16.16 17.51 18.91 20.34 21.80 23.29
24.81 26.35 27.92 29.51 31.11 32.73 34.36 36.01 37.66 39.33
40.99 42.67 44.34 46.01 47.69 49.36 51.02 52.69 54.34 55.99
57.63 59.25 60.87 62.48 64.07 65.65 67.22 68.77 70.30 71.82
73.33 74.81 76.28 T7.73 79.17 80.58 81.98 83.35 84.71 86.05
87.37 88.67 89.95 91.21 92.45 93.67 94.87 96.05 97.21 98.35
99.47 100.57 101.66 102.72 132.87

</bet>
</weight>
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<l—= —>
<!——PREDATOR MODEL PARAMETERS—>
<l—— —>
<!l———— 1. Available OPTIONS ————>

<seasonal_migrations bet="0"/>

<vertical _movement bet="1"/>
<!—— if optimal mu and sigma (b_sst larvae and a_sst_ larvae)

for larvae assumed different from b_ and a_sst_ spawning —>
<uncouple_sst_larvae bet="1"/>

<gaussian_thermal function bet="1"/>
<cannibalism__juv bet="0"/>
<food_requirement_in_mortality bet="0"/>
<l——= end of Available OPTIONS ——>

<l——= 2. Spawning habitat parameters —————>
<a_ sst_spawning bet="5.499999377710821 ">

<variable min="0.5" max="5.5" use="false"/>
</a_sst_spawning>

<b_ sst_spawning bet="25.50000000432488 ">
<variable min="25.5" max="31.0" use="false'/>
</b__sst_spawning>

<l——parameters *_sst_larvae are ignored if
<uncouple sst_larvae bet="0"/> —_—>
<a_sst_ larvae bet="3.749999993906406 ">
<variable min="0.5" max="3.75" use='"false"'/>
</a_sst_larvae>

<b_sst_larvae bet="26.00001467106519 ">
<variable min="26.0" max="28.0" use='"false"/>
</b_sst_larvae>

<alpha_ hsp_ prey bet="0.02421327707107811">
<variable min="0.002" max="0.1" use="false"/>
</alpha_hsp_prey>

<alpha__hsp_ predator bet="0.5000024599599174 ">
<variable min="0.5" max="1.5" use='"false"/>

</alpha_hsp_predator>

<beta__hsp_ predator bet="0.7696338480923586 ">
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<variable min="0.0" max="2.0" use="false"/>
</beta__hsp_predator>
<l——=—= end of Spawning habitat parameters

——>

<!l——— 3. Recruitment function >
<nb_recruitment bet="0.006500965085506141">

<variable min="0.0005" max="0.05" use="true'/>
</nb_recruitment>

<a_ adults_spawning bet="15.72612509571025">
<variable min="10" max="20" use="true"/>
</a_adults_spawning>

<l———= end of Recruitment function —>

<l——= 4. Juvenile habitat parameters ————>
<l——Activated by flag <cannibalism juv bet="1"/>——>
<hp_ cannibalism bet="5.0">

<variable min="0" max="20" use="false"/>
</hp__cannibalism>

<l—— end of Juvenile habitat parameters

—>

<l——= 5. Adult seasonal migrations ——-—>
<!——Activated if <seasonal migrations bet="1"/> —>
<spawning_ season_ peak bet="180.86071670988996 ">

<variable min="0" max="100" use="false'/>
</spawning_ season_ peak>

<spawning_season_ start bet="1.00477324755014">
<variable min="0.95" max="1.2" use='"false"'/>

</spawningiseasonistart>

<l—= end of Adult seasonal migrations —————>

<l———= 6. Adult feeding habitat —>
<a_sst_ habitat bet="2.434728444404373">

<variable min="0.5" max="7.5" use="false"/>
</a_sst__habitat>

<b_sst_habitat bet="15.48493201609903 ">
<variable min="9.0" max="15.5" use="false"'/>
</b_sst_habitat>

<T__age_size_slope bet="0.7000001820865549 ">
<variable min="0.7" max="3.1" use="false"/>
</T__age_size_slope>

<!l——three parameters below are active only if
<gaussian_thermal function bet="0"/>—>
<thermal func>
<deltal bet="0.04">
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<variable min="0.0" max="0.05" use='"false"/>
</deltal>

<delta2 bet="0.015">
<variable min="0.0" max="0.25" use='"false"/>
</delta2>

<delta3d bet="0.25">
<variable min="0.0" max="10.0" use="false"'/>
</delta3>
</thermal func>

<a_oxy__habitat bet="0.0001120486069333051 ">
<variable min="0.00001" max="0.15" use="false"/>
</a_oxy__habitat>

<b_oxy__habitat bet="1.485492424315652">
<variable min="0.5" max="2.5" use='"false"'/>
</b_oxy_habitat>

<eF_habitat>
<epi bet="0.999999999843883 ">
<variable min="0.0" max="1.0" use="false"/>
</epi>

<meso bet="0.4858662333732704">
<variable min="0.0" max="1.5" use="false"/>
</meso>

<mmeso bet="0.9999997359387802 ">
<variable min="0.0" max="1.0" use="false"/>
</mmeso>

<bathy bet="0.0">
<variable min="0.0" max="1.0" use='false"/>
</bathy>

<mbathy bet="0.3653131477844179">
<variable min="0.0" max="1.0" use="false"/>
</mbathy>

<hmbathy bet="0.9999999997564847 ">
<variable min="0.0" max="1.0" use="false"/>

</hmbathy>
</eF_habitat>
<l—— end of Adult feeding habitat —————>
<l———= 7. Movement parameters =—>

<sigma_ species bet="1.054119672277597">
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<variable min="0" max="1.5" use="false"/>
</sigma_ species>

<c_ diff fish bet="0.9">
<variable min="0.0" max="1.0" use="false"/>
</c_diff_fish>

<MSS_species bet="0.150000000076028 ">
<variable min="0.15" max="2.0" use="false"/>
</MSS__species>

<MSS_size_ slope bet="0.7500119452996615 ">
<variable min="0.5" max="1.1" use='"false"/>
</MSS__size_slope>

<l—— end of Movement parameters —_—

<l——= 8. Mortality parameters =—>
<Mp_mean_max bet="0.1135833270984567 ">
<variable min="0.0" max="0.12" use="false"'/>
</Mp_ mean_max>

<Mp_mean_exp bet="0.02306">
<variable min="0.01" max="0.5" use='"false"/>
</Mp_mean__exp>

<Ms mean max bet="1.0e—10">
<variable min="0.0" max="0.05" use="false"/>
</Ms_mean_ max>

<Ms_mean_slope bet="3.85">
<variable min="0.0" max="5.05" use='"false"/>
</Ms_mean_ slope>

<M_mean_range bet="0.1">
<variable min="0.0" max="0.5" use="false"/>
</M__mean_range>

<l—— end of Mortality parameters —————>

<l————= 9. Food requirement index —>

<!—— Used only if <food requirement in_ mortality bet="1"/>—>
<l—— residual competition is the proportion of total F biomass
available for a given species in the presence of other species —>

<residual competition bet="0.025"/>

<!—— daily food ration —>
<forage ration bet="0.06"/>
<l————= end of Food requirement index —>
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<l—— —>
<!——FISHERY DATA AND PARAMETERS—>
<! —>

<q_sp_ fishery>
<variables use="true'/>

<Ll bet="1.298725739770595e—05">
<variable min="0.0" max="0.001" use="true" dyn="0.004"/>
</L1>

<L2 bet="2.57024034053101e—05">
<variable min="0.0" max="0.001" use="true" dyn="0.004"/>
</L2>

<L3 bet="8.240793041768003e¢—-06">
<variable min="0.0" max="0.001" use="true" dyn="0.004"/>
</L3>

<L4 bet="1.73244042928708e—05">
<variable min="0.0" max="0.001" use="true" dyn="5e—04"/>

</L4>

<L5 bet="0.0">

<variable min="0.0" max="0.001" use="false" dyn="0.0"/>
</L5>

</q_sp_fishery>

<l——selectivities as functions of length—>

<l——1 — logistic , 1 parameter: main parameter is used as a slope coefficient
—_—>

<l——2 — sigmoid, 2 parameters: main parameter as slope coefficient +
length_ threshold—->

<l——3 — asymmetric Gaussian, 3 parameters: length threshold as optimal value,
main as sigma, right_asymptote as the function min on the right —>

<s_sp_ fishery>
<variables use="true'/>

<L1 bet="23.79737028104424">
<variable min="5" max="50" use="true'/>
<function_type value="3"/>
<length threshold bet="114.8134593861857" use="true'/>
<right__asymptote bet="0.99999999999999976" min="0" max="1" use
="false"/>
</L1>
<L2 bet="19.5874705020817 ">
<variable min="5" max="60" use="true'/>
<function_ type value="3"/>
<length_threshold bet="126.6702726553326" use="true'/>
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</L2>
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<right_asymptote bet="0.25" min="0.25" max="1" use="false"/>

<L3 bet="0.13">

< /L3>

<variable min="0.05" max="0.6" use='"false'/>
<function_type value="2"/>

<length threshold bet="102.0580630708797" use="true"/>
<right__asymptote bet="0.4" min="0" max="1" use="false"/>

<4 bet="18.86567062907572">

</L4>

n ]

<variable min="5" max="36" use="true'/>

<function_type value="3"/>

<length_threshold bet="130.7283846873609" use="true"/>

<right__asymptote bet="0.2294335924829242" min="0" max="1"
"true'/>

use=

<L5 bet="0.1694198322792639 ">

</L5>
</s_sp_fishery>

<variable min="0.05" max="0.6" use="true"/>
<function_type value="2"/>

<length_threshold bet="70.86730272234507" use="true"/>
<right_asymptote bet="0.7" min="0" max="1" use="false"/>

<l

—>

<!——AGGREGATION ZONES—>

<l——

—

<nb_region value="11"/>

<use_ mask catch

value="0"/>

<area0 area_id="1" lgmin="120" lgmax="170" ltmin="20" ltmax="50"/>
<areal area_id="2" lgmin="170" lgmax="210" ltmin="10" ltmax="50"/>
<area2 area_id="3" lgmin="140" Igmax="170" ltmin="-10" ltmax="10"/>
<area3d area_id="4" lgmin="170" lgmax="210" ltmin="-10" ltmax="10"/>
<area4 area_id="5" lgmin="140" lgmax="170" ltmin="—-40" ltmax="-10"/>
<areab area_id="6" lgmin="170" lgmax="210" ltmin="-40" ltmax="-10"/>
<area6 area_id="7" lgmin="110" lgmax="140" ltmin="—-10" ltmax="20"/>
<area7 area_id="8" lgmin="210" Igmax="240" ltmin="-40" ltmax="10"/>
<area8 area_id="9" lgmin="240" lgmax="290" ltmin="-40" ltmax="10"/>
<area9 area_id="10" lgmin="210" lgmax="280" ltmin="10" ltmax="50"/>

<areal(Q area_id="11" lgmin="140" lgmax="170" ltmin="10" ltmax="20"/>

<nb_region_sp_ B bet="11"/>

<area_ sp_ B>
<bet>1 2 3 4 5
</area_sp_ B>

6 78 9 10 11</bet>

<nb_EEZ value="0"/>
<l——File maskEEZ should be placed in input data directory—>
<str_ file. maskEEZ value="SP_ IPSL mask eez wcpfc. txt"/>

<EEZ>
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<eez0 name="New Caledonia" id="-19"/>
<eezl name="Fiji" id="-12"/>
<eez2 name='"Vanuatu"' id="-33"/>
<eez3 name="Solomon  Islands" id="-29"/>
<eez4 name="New  Zealand" id="-23"/>
<eezb name="Norfolk" id="-20"/>
<eez6 name="Matthew Hunter" id="—-16"/>
</EEZ>
<l—— Parameters likelihood_ parametes and prob_zero are

parameters of zero—inflated

<likelihood_parameters>
<variables use="false'/>
<L1 bet="0.01"/>
<L2 bet="0.007"/>
<L3 bet="0.0"/>
<L4 bet="0.01"/>
<L5 bet="0.01"/>
</likelihood__parameters>

<prob_ zero>

<Ll bet="0.0"/>
<L2 bet="0.0"/>
<L3 bet="0.0"/>
<L4 bet="0.0"/>
<L5 bet="0.0"/>

</prob_ zero>

</par>

negative binomial likelihood —>
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Appendix B

Technical annex

B.1 Makefile

HEADERS= \
XMLDocument2.h \
calpop.h \

Map.h \

Matrices.h \
Numfunc.h \
ReadWrite.h \
Param.h \

Date.h \
SaveTimeArea.h \
SeapodymCoupled.h \
SimtunaFunc.h \
mytypes.h \
SeapodymDocConsole.h \
ctrace.h \

Utilities.h \
VarMatrices.h \
VarParamCoupled.h \
VarSimtunaFunc.h

SRCS=\

main.cpp \
XMLDocument2.cpp \
VarParamCoupled.cpp \
seapodym__coupled.cpp \
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Map.cpp \

Matrices.cpp \

Numfunc.cpp \

ReadWrite.cpp \

Param.cpp \

Date.cpp \

SaveTimeArea.cpp \

SimtunaFunc.cpp \
VarParamCoupled_xinit.cpp \
VarParamCoupled_reset.cpp \
SeapodymCoupled_EditRunCoupled.cpp \
SeapodymCoupled_ OnRunCoupled.cpp \
SeapodymCoupled OnRunFirstStep.cpp \
SeapodymCoupled OnReadForcing.cpp \
SeapodymCoupled_ OnWriteOutput.cpp \
SeapodymDocConsole__UpdateDisplay.cpp \
dv_ spawning habitat.cpp \

dv_ juvenile habitat.cpp \

dv_mortality sp.cpp \

dv__spawning habitat.cpp \

dv_ caldia.cpp \

dv_ tridag_bet.cpp \

dv_ calrec_adre.cpp \

dv_ survival.cpp \

dv__precalrec_ juv.cpp \

dv__calrec_ precalrec.cpp \

dv_ predicted_ catch.cpp \

dv_ predicted_catch_without_ effort.cpp \
dv_total exploited biomass.cpp \
dv_total obs_catch_age.cpp \
dv__spawning.cpp \

dv_ accessibility.cpp \

dv_ feeding habitat.cpp \

dv_seadonal switch.cpp \

dv_ total pop.cpp \

dv__total _mortality _comp.cpp \
dv_food_ requirement_ index.cpp \
Calpop__caldia.cpp \

Calpop__calrec.cpp \

Calpop_ InitCalPop.cpp \
Calpop__precaldia.cpp \
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Calpop_ precalrec.cpp \
Calpop_ tridag.cpp \

Calpop_ recompute_ coefs.cpp \
like.cpp

SRCPATH=DOM//src:src
INCPATH=-IDOM/src -Isrc
BINPATH=.

OBJPATH=objs
ADMODEL=$(ADMB_HOME)

DEBUG= -g
CFLAGS=-DTRUE=true -DFALSE=false -D __ GNUDOS___ -Dlinux -O3 -DOPT_LIB
-Wall -Wno-deprecated -I$(ADMODEL) /include -I/usr/include/libxml2 $(INCPATH)
LFLAGS= -L$(ADMODEL)/lib -ladmbo -1dl -lstdc++ -lxml2 -lm
CC=gcc
LL=$(CC)

vpath %.cpp $(SRCPATH)
vpath %.h $(SRCPATH)

OBJECTS=$(SRCS:%.cpp=$(OBJPATH)/%.0)

export OBJECTS
export OBJPATH

export CFLAGS
export LFLAGS
export CC
export LL

all: init $(BINPATH)/seapodym

init:

@test -d $(OBJPATH) || mkdir -v $(OBJPATH)

test: init $(OBJECTS)
make -f Makefile.test

docs: $(SRCS) $(HEADERS)
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@doxygen

$(BINPATH) /seapodym : $(OBJECTS)
$(LL) -0$@ $(DEBUG) $~ $(LFLAGS)

$(OBJPATH)/%.0 : %.cpp
$(CC) -0%@ $(DEBUG) -c¢ $(CFLAGS) $(filter %.cpp, $7)

$(OBJECTS) : $(HEADERS)

clean:
@rm -vf $(OBJECTS) $(BINPATH)/seapodym
@Qrm -vf $(OBJECTS) $(BINPATH)/seapodym.exe
@Qrm -vf $(OBJECTS) $(BINPATH)/TestSeapodymCoupled
@rm -vrf $(OBJPATH)
@rm -vrf docs
@rm -vf gmon.out



Appendix C

File formats

C.1 ASCII fishing data files

C.1.1 Effort and catch

The raw geo-referenced effort and catch data is a voluminous dataset containing the infor-
mation on fishery, gear, date, lon-lat coordinates, spatial resolution as well as corresponding
records of effort and catch. In order to be correctly interpreted by the SEAPODYM software,
the data should be organised and formatted as described below. Note that it is advised to
keep the original spatial resolution of fisheries data. This avoids unnecessary inflation of
the ASCII file and allows fitting the catch at original spatial resolution. As described in
Chapter 4 (section 4.1.1), the uniform distribution of fishing effort or catch is implemented
in the code in order to ensure that the fishing mortality is always applied at the spatial
resolution of the model.

The effort and catch data file format is shown below. It is a tabulation-separated ASCII
file with extension .txt, having a small header followed by the table with row names as follows
(example):

7 + number of fisheries

84286 52530 47545 21675 3354 158510 120459 < number of records by fishery
fyr mmdd gr lat lon res E C < column names

11950 8 156 L 7.5 162.55 60 1.118 < the first record in the file

The detailed description of each record is provided in Table C.1. Note, the name of the
fishery is read by the code as the concatenation of letter in gr and the ID in f. For example,
the record above belongs to fishery 'L1°. Hence, each unique combination of gear and ID is
interpreted as a stand-alone fishery and the number of fisheries as well as number of records
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Table C.1: The information written in the input geo-referenced effort and catch data file
prepared for the SEAPODYM software.

Column Description Type
name

f Fishery ID integer
yr Year of catch integer
mm Month of catch integer
dd Day of catch integer
gr Usually a single letter denoting fishing gear. Examples: L for long- character

line, S for purse-seine, P for pole and line, T for troll, O for other
(combination of different gears)

lat Latitudinal coordinate of the centre of the square, in which the float
catch data was aggregated, given in digital degrees

lon Longitudinal coordinate of the centre of the square, in which the float
catch data was aggregated, given in digital degrees

res The size of the square in which the catch data was aggregated, in float
degrees; should be unique by fishery

E Fishing effort, can be given in different units; the units are implicit float

(affect the catchability coefficients) and should be unique within a
given fishery

C Catch of a given species; the units, usually metric tonnes or num- float
ber of individuals, are not stored in this file and should be unique
through all fisheries in the file

for each fishery must correspond to the information provided in the header. Consequently,
all fisheries present in this file have to be defined in the configuration parfile in order to be
taken into account.

C.1.2 Size frequencies

Although it is strongly recommended to use the length frequency (LF) data in SEAPODYM
to facilitate parameter estimation, it is possible to run SEAPODYM without size frequency
data by setting flag frq likelihood and number of LF files file frq data to 0. Since
the LF data are provided at coarse spatio-temporal resolution, usually over quarter and
rectangular region, and because the data are size structured, the file format is very different



Release 4.0 169

from effort and catch data file. However, the same fisheries, partially or entirely, must be
present in the LF file. Besides, the region of LF record must contain at least one record with
effort and catch data to be taken into account.

Several LF files can be provided as the SEAPODYM input. The splitting is necessary
once the size structure of the data is not homogeneous. For example, the catch at size
provided for at 2 cm bins cannot be combined with the data at 1 cm bins. Each LF file
consists of the header with regional structure of the LF data and the table, which contains
the information on date, region, fishery and the catch at size records. The LF file is the
tabulation-separated ASCII file with extension .txt having the following structure (example):

668 7 20809 < nb. of unique regions nb. of fisheries total nb. of records
1 110 115 15 20 < region ID  regional coordinates

e < all other regions from 2 to 668

11 20 5 + number of bins  first bin size bin size

yr qtr mo f reg LF[1] .. LF[11] <« column names of the main table
195561 1 L1 200 005 37 19 18 4 1 0 <« standard LF record

where regional coordinates should be written as tab-separated (lon-west, lon-east, lat-south,
lat-north) set. The detailed description of the LF record is provided in Table C.2. Note that
since the LF data are usually quarterly, column 'month’ is redundant and contains the first
month of quarter, however it can potentially be used in case if higher resolution data will be
available.

Table C.2: Structure of length frequencies data file.

Column Description Type

name

yr The year of the LF sample integer

qtr The quarter of the LF sample integer

mo The month of the LF sample or the first month of the quarter for integer
seasonal data

f Here the fishery name as in the effort and catch file and in the character
parfile

reg The ID of the region of a given sample integer

LF[i] The number of fish caught in the size bin ¢, this number can be float

raised to total catch
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date, tstep Sum over P in C-C
+ n
forage

——

Biomass of each

Primary production in C-C

functionnal group.

Biomass
per life stage Fishing effort, observed and predicted catch
spname Observed and predicted CPUE, by fishery
—_— —
Niife stage + 1 + ny X5

~~

Total biomass of

spname

Figure C1: The structure of SumDym.txt file. The coordinates C' — C' correspond to three
regional aggregations of the primary production P: 10°N-45°N; 10°S-10°N and 35°S-10°S,
where longitudinal extension corresponds to that of model domain. The number of columns
N forages Mife stages T denote the number of micronekton groups, the number of life stages
and the number of fisheries respectively.

C.2 ASCII output files

C.2.1 SumDym.txt

All ASCII output files in SEAPODYM are tabulation-separated. The SumDym.txt file
contains the time evolution of the model variables aggregated over the model domain, i.e.
for each variable ¢(z,y,t) either used as model forcing or computed by the model it has
> ¢(x,y,t). The scheme in Figure C1 illustrates the structure of this file. The data are
zy

written in tabular form. The one-line header contains the names of the table columns.
The dimension, i.e. number of columns and rows in this file depends on the current run
configuration specified in the parfile, with the number of rows being the number of time
steps n;, and number of columns depending on number of life stages and number of fisheries.

C.2.2 SumQArea.txt

This file is similar to SumDym.txt, however instead of aggregation over the model domain,
it contains model variables aggregated over regional structure defined in the parfile (see sec-
tion 3.4.7 for more details). Also, this file does not contain fisheries stattistics. The file
header provides essential details on regional structure defined in the current run and the
definition of life stages. Thus, first n,¢, lines are filled with regional coordinates correspond-
ing to the corners of rectangular regions, written as follows: westmost longitude, eastmost
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Nb. of larvae Nb. of small juveniles
per region per region
= ~ =
3 + n + 1 + n + 1
~— reg ~— reg ~—
year month day Nb. of larvae Nb. of small juveniles
over all regions over all regions
Biomass at young stage Biomass at adult stage
per region per region
A~ NN
+ n + 1 + n + 1
reg NI, reg ——
Biomass at young stage Biomass at adult stage
over all regions over all regions
Biomass at young and adult stages
per region
A~
+ /n/reg + 1

Total biomass at young and adult stages

over all regions

Figure C2: The structure of SumQArea.txt file.

longitude, southern latitude, northern latitude. Regions are followed by the summary of the
species life stages among larvae, juvenile, young and adult as well as the indices of age classes
included within each life stage. Note, since this file is mostly used for comparisons with re-
gional stock assessment estimates, recruits are also written, although it is not a life stage in
SEAPODYM, but simply an age class that corresponds to the definition of recruitment to
the exploited population used in the stock assessment model.

The main table has the header denoting column names. The number of rows of this table
corresponds to the number of model time steps, n;, and columns as shown schematically in
Figure C2.

C.2.3 SumEEZ.txt

The tabulation-separated file ttfamily SumEEZ EEZname.txt contains the time evolution
of biomass extractions over selected EEZ area. The structure of this file is shown in Fig-
ure C3. The number of columns is fixed, and the aggregated statistics is computed for larvae,
small juveniles, recruits (same definition as for SumQArea.txt) young (immature adults) and
mature adults. The last column contains the sum of biomass at young and adult life stages.
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Nb. of larvae, small juveniles Total biomass
and recruits in EEZ sum of young and adult
3 + 3 + 2 + 1
~—~

year month day Biomass at young

and adult stage

Figure C3: The structure of SumEEZ. txt file.

C.2.4 MeanVar.txt

This ASCII output file spname_MeanVar.txt is used to analyse the temporal evolution of
aggregated model variables at age, with the aggregation method being the weighted mean
and weights being the spatial distribution of population density. The aggregated variables
are: 1) natural mortality at age, 2) species speed at age, 3) species diffusion rate at age, and
4) the ambient water temperature at age. The information is structured into a matrix of n,
rows and the number of columns depending on the number of age classes. See Figure C4 for

more details.

Weighted mean of model variables at age a !

——

3 + N X 4
year-month-day

Figure C4: The structure of spname_MeanVar. txt file.

C.2.5 Spatial_Corr.txt

The ASCII file spname_Spatial_Corr.txt contains correlation statistics for catch and CPUE
data. The number of rows in this file is equal to the number of time steps n;, and the columns,
reading from the left to right of the matrix, are structured as shown in Figure C5 :

L Ani + r(CP, C’J}Z%d) + pc + T(CPUE;I’S, CPUEJI?red) + pcpPuE

date

ng

Figure C5: The structure of spname_Spatial Corr.txt file. The date is written as "YYYY-
mm’. The number n;; is the number of spatial observations for a given fishery f and time

step.

lwith a varying from 0 to the maximum age A1 defined in the model run.
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The C-code that computes the correlation is based on a script detailed in the book
"Numerical Recipes in C, Press and al. 1994 (14.5 p. 638). If we denote X the observed
variable, and Y the estimated one, then at each time step we the spatial correlations are
computed as follows:

dx (i>j) =X (i,j) - <X (i>j)>i,j
Cxy = <6X5Y>Z'7j
Cxy

VCxxCyy

r =

C.2.6 LF obs.txt

File spname_LF_obs.txt stores the observed quarterly and annual length frequency data
read by SEAPODYM redistributed to the model age structure and aggregated by fishery and
region. Note, if the regional structure is not activated in the parfile, that is nb_region_sp B
= 0 in the aggregation section, then the regional structure of the LF data is used to write
this file, leading to usually a very big file size.

Since both age and regional information is written over quarters, the file contains five
table, corresponding to four quarterly and one annual aggregation of the catch-at-age data.
The number of rows in each table is equal to the number of age classes and the number of
columns depends on the number of fisheries and regions in the model configuration. Each
line in these tables is structured as shown in Figure C6:

Catch-at-age by fishery Catch-at-age by fishery Total catch-at-age
in region 1 in region nreg by region
=~ =~ A~ =
1 + ny <o ny + ny + Nyreg
~—~ N

length-at-age
Total catch-at-age

by fishery over all regions

Figure C6: The structure of quarterly or annual LF data in spname LF_obs.txt file. The
mean length-at-age is written in cm.

C.2.7 LF__Q_ fishery.txt

The data structure in file spname LF_Q_fishery.txt is similar to that in the input file
spname_LF.txt described in section C.1.2. The difference with the input data file is that
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here the LF data are aggregated to the model age classes. The file header is written as
follows (example of the skipjack model configuration):

5 15 < number of regions number of fisheries
11.65 16.91 21.83 26.43 ... — Uy by oo Ly
yr qtr mo f reg LF[1] .. LF[11] < column names of the main table

with length-at-age ¢, being the mean length (in cm) of individuals in age classes p starting
from the first age in the young life stage (Table 1.1). The lines of the main table are
structured as shown in Figure C7.

Fishery Length frequency
region
3 + 1 +_ 1 +n i
ages at the adult life stage
Year + Quarter + Month

Figure C7: The structure of spname_LF_Q_fishery.txt file.

C.2.8 LF_Q_ sum.txt

The structure of file spname LF_Q_sum.txt storing the predicted length-frequency statistics
is identical to that of file spname LF_obs.txt. See Figure C6 for details.

C.3 DYM files

The binary DYM files are standardized binary files designed specifically to store SEAPODYM
input and output variables. These files can be viewed with the GUI software SeapodymView
(see D.1) or handled manually using a scripting languages such as R or Python (section D.3).
Note, during SEAPODYM development two types of DYM files, DYM1 and DYM2, were
implemented, however only DYM2 is currently supported. This section describes DYM2

type.

C.3.1 Structure of a DYM file

All DYM files have the same structure: a header and a single three-dimensional variable
written as a sequence of 2D-arrays (matrices) along Z dimension denoting either time or
age. Consequently, all input files (section 3.4.4) that store the time evolution of spatial
variables in the model configuration must have identical size. Likewise, all SEAPODYM
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output files in DYM format (section 3.6.2) have the same size, which may differ from the
size of input files or between simulations depending on the specified time period in the
simulation.

The header

The DYM header contains information on model domain and dimensions:

DYM_TYPE
GRID_ID
MIN VALUE
MAX VALUE
NLON

NLAT
NLEVEL (94 3 x (NLON x NLAT) + NLEVEL) x 4
START DATE

END DATE

XLON [NLAT] [NLON]

YLAT [NLAT] [NLON]
ZLEVEL [NLEVEL]

LAND MASK [NLAT] [NLON]

where the expression on the right-hand side gives the size of the header in bytes as all values
are written as 4-byte objects. Detailed description of each value in the header as well as
their types are provided in Table C.3.

Spatial data

The 3D variable is written as a sequence of 2D arrays sorted in chronological order form the
first to the last matrix, each matrix being read/written from north to south and east to west
(see Figure C8). Contrary to the 4-byte data types in the header, the DYM variables are
declared as double, i.e, the storage size of 8 bytes (Table C.3). Unfortunately, the current
DYM2 format does not store the units of the variable written in the DYM file.

DYM conventions

SEAPODYM has a few conventions that impose the rules for creating and interpreting DYM
files. They are listed below.

« DYM files do not take into account implicit boundary cells of numerical model as
shown in Figure 2.1 of Chapter 2. Hence the indices of the DYM variable start always
with (1,1) in the numerical model code.
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Table C.3: Description of DYM file parameters and 3D variable.

Name Description Type

Header

DYM TYPE  DYM file type, always DYM2 4-byte char] |

GRID_ID Grid type can have two value: 0 indicates regular uni- 4-byte char| |
form grid, 1 — irregular, e.g., stretched grid

NLON Number of grid cells in longitudinal dimension integer

NLAT Number of grid cells in latitudinal dimension integer

XLON Array of size NLAT x NLON filled with longitudinal coor- float] || |
dinates (in degrees) in ascending order

YLAT Array of size NLAT x NLON filled with latitudinal coordi- float] || |
nates (in degrees) in descending order

NLEVEL Number of time steps or age classes integer

START DATE First decimal date or age index of the series, for dates float
see eq. C.3

END DATE  Last decimal date or age index of the series, for dates float
see eq. C.3

ZLEVEL Vector of decimal dates or indices of age classes float] |

LAND_MASK The land mask of dimension NLAT x NLON with values 0 integer[ ][ ]
for land and 1 for the sea cells

MIN VALUE Minimum value of DYM variable over entire time period float

MAX _VALUE Maximum value of DYM variable over entire time period float

3D variable

VAR Data matrices of dimension NLAT x NLON, the units de- double

pend on data type
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 Dimensions NLON and NLAT correspond to n, (2.2) and n, (2.3) respectively.

« Coordinates giving the corners of rectangular domain (i.e., the outermost nodes of first
and last grid cells) in the XML parameter file relate to DYM dimensions NLON and
NLAT as follows:

_ ) ., 60.0
NLON = (longitudeMax — longitudeMin) AX (C.1)
60.0
NLAT = (latitudeMax — latitudeMin) NG (C.2)

o The use of Arakawa-A grid implies that the model variable is placed in the centre of
the grid cell, therefore coordinates XLON, YLAT in DYM files should give the centre of
the grid cell.

o Same as above, the use of Arakawa-A grid implies the variable written in DYM file
should be valid at the centre of the grid cell.

e The date in the DYM file is stored in a decimal format. Two conventions exist in
SEAPODYM: 1) monthly time-stepping considering 360-days year and 2) standard
time-stepping with AT < 30, hence considering standard date format. The following
conversions from standard date to the decimal date are implemented by SEAPODYM:

year + ZmR=l 4 S AT = 30
year 4 Sy-of_year AT < 30

nb_days_year’

decimal_date = { (C.3)

where day_of_year is the sequence day of the year and nb_days_year is the number
of days in current year. Consequently, any other conversion may lead to improper
interpretation of dates and hence potential misuse of matrices written in DYM files.

o The land mask written in DYM file contains only two layers, land and sea, denoted by
0 and 1 respectively. This mask, proper to the DYM variable, should not be confused
with the three-layer land mask used in numerical model run (section 3.4.2). Hence,
any other mask values written in the DYM file will be ignored by the numerical model
and by SeapodymView software (next section).
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NLON

NLAT

First matrix

Zlevel

Second matrix

Last matrix

Figure C8: The order and arrangement of a two-dimensional variable in the DYM files
containing ZLEVEL 2d-arrays, i.e., matrices of size NLATXNLON. Each matrix is written
by rows moving in latitudinal dimension from north to south, each row includes complete
longitudinal vector of values, writted from west to east. This relates to the SEAPODYM
convention that the origin (0, 0) is placed in the north-west corner of the rectangular domain.



Appendix D
Toolbox

D.1 SeapodymView

The SeapodymView software was designed at SPC to manipulate and visualize DYM files.
This software has a dedicated documentation, therefore here we provide only a short descrip-
tion of essential functionalities of SeapodymView that are used more often, recommending
to read its reference manual for the complete information. SeapodymView is a java applica-
tion, which runs both on Linux and Windows. Note, the language settings depend on the
computer set-up, so the names in the menus cited here will be different if default language
is not English. Several options for the Look and feel of the software are available.

D.1.1 Visualization of DYM variables

Getting started with SeadpodymView is simple and intuitive. Upon loading, the software
opens the dialogue window (Figure D1, panel a) suggesting to select DYM file from the home
directory (first load), or from the directory that was previously selected. In the right panel
of this dialogue window the software shows the information written in the DYM header.
If SeapodymView was already open and one file was already displayed, more files can be
loaded from menu File — New, or by clicking the button Create a new document. The
software reads the data from selected DYM file and opens the pop-up window displaying its
first spatial distribution (Figure D1, panel b).

The map is displayed within the entire latitudinal and longitudinal ranges. It can be
zoomed in and out using the mouse wheel. Otherwise the regional zoom can be achieved by
selecting the rectangular zone of interest while holding the mouse wheel down. Another click
of the mouse wheel on the selected region gets the entire map back. By default, the colorscale
for the spatial distribution is confined within the MIN_VALUE and MAX_VALUE written in the
DYM file, which is not always optimal in terms of visualization. So, the minimal and maximal
displayed values can be modified via right click of the mouth on the map and selecting Color
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palette from the pop-up menu. Note also that it is possible to see the values on the map
with the left mouse click. The value on the intersection of two perpendicular lines are always
displayed in the bottom panel of the window, which shows also the current coordinate and
the date.

The spatial distributions can be advanced in time with help of buttons on the left-hand
panel (green triangles with vertical bar, see Figure D1, panel b). Another useful functionality
of SeapodymView is the animation of spatial distributions, controlled with help of buttons
Play the animation, Stop the animation etc. on the left-hand panel. Besides, if several
DYM files are displayed, it is possible to synchronize the animation by placing each spatial
distribution at the same time step and linking them using button Select everything. The
speed of animation can be adjusted, see menu Properties/Advanced.

Also, SeapodymView can visualize several DYM variables overlayed on the same map.
Thus, it is possible to overlay the fish density biomass with other variables, such as sparse
catch data, ocean currents, weekly or monthly individual trajectories. See Properties in
the pop-up menu activated by the right click of the mouse on the map.

Note that the software allows opening the output DYM file while the simulation is still
running. The only condition that is required by SeapodymView is that at least three matrices
are written in the DYM file. This functionality can be particularly useful for the long runs,
allowing a quick check of the model output without waiting the end of simulation.

D.1.2 Temporal and spatial extractions

SeapodymView can extract DY M variables over the region of interest or over the selected time
period (see menu Tools/Extraction/Seapodym). Moreover, upon extracting, the variable
can be aggregated resulting either in its temporal or spatial average.

Temporal averaging => Spatial matrix. Let’s call ¢ (x,y,t) the value of a DYM vari-
able at the position (z,y) and at time ¢. A temporal average can be done as ((¢ (z,y,1)),),
where the notation (...), means an average over the dimension i. As a result we obtain
a two-dimensional distribution of the size derived from the variable’s resolution and
the selected region.

To do that, go to Tools — Extraction — Depth averaging. Then, click on tab
Options and select Temporal averaging => Spatial matrix. Then, go back to the
Selection tab and adjust the regional coordinates if necessary. Note, the temporal
average can either be saved to another DYM (.dym) file, or to the ASCII (.txt) file.
The choice of the file type can be done in the same dialogue window.

Spatial averaging => Time series. Here, the following operation is performed with
DYM variable: ¢ (t) = (¢ (,y,t)),,, which provides the temporal evolution of the its
average over a given region. So, the result is the time series.
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(b)

Figure D1: Loading a .dym file with Seapodym View. (a) Dialogue window of the loading
file, showing the input directory, the list of DYM files and the contents of the file header. (b)
File loaded and map displayed and fully extended on the visualization pane. The colorscale
"Temperature’ goes from the dark purple to the red for the lowest to highest values being
displayed. The buttons on left-size panel allow playing the animation or to advance the
spatial distribution in time by one time step.
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To do this operation, go to Tools — Extraction — Depth averaging, then in the
tab Options select Spatial averaging => Time series. Go back to the Selection
tab, and choose the space-time domain to compute average and extract the time series.
The output will automatically be saved into an ASCII file.

D.1.3 Arithmetic operations

SeapodymView allows performing basic arithmetic operations with two or more DYM files.
To do that, click on Tools — Math Operation. The first file has to be selected in the
upper panel named Input file. Then the user us suggested to choose the Operator among
implemented addition, subtraction, multiplication, division and power). The variable from
selected DYM file can either be multiplied (subtracted...) by the Coefficient, or the
operation can be performed on several DYM variables. In the latter case, activate the option
Use the sum of these auxiliary files, and the dialogue window will allow selecting one
or several more DYM files. The result of the operation is stored in the new DYM file, its
name and location should be specified in the same dialogue before the 0k button gets active.
Once the prompt message informing on the file creation has popped up, the new file can be
loaded and the result of the operation can be viewed.

D.1.4 From DYM to ASCII file

This conversion might be useful to preform quick quantitative analysis or to plot DYM
variable or its regional/temporal extractions using high-level programming languages such
as R, Python, or Matlab.

To extract the variables into a text file, go to Tools — Extraction — Matrix. Check
the path directory. The name will be set automatically depending on the format chosen to
store in the matrix. The file Txt type is selected automatically. Then in the Selection tab
choose one of the five variables for extraction. No adjustment is necessary if choosing the
spatial coordinates (XLON, YLAT) or time (ZLEVEL) vector. However, when selecting the land
mask Msksp or the DYM variable (Data - main data block), it is possible to specify the
region and the time period for extraction. Clicking Ok generates the output ASCII file in
the selected folder.

D.2 Grid and Mask Builder

To build the grid for the chosen geographic area and to create the multi-layered land mask we
suggest to use the software called GMB (Grid and Mask Builder). It allows also manipulation
of land mask such as modification of domain boundaries, closure or opening of sea cells,


https://www.r-project.org/
https://www.python.org/
https://fr.mathworks.com/?s_tid=gn_logo
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filtering out the small areas (lakes) surrounded by land and so on. Using ETOPO2 (2-minute
gridded global relief data, see information on http://www.ngdc.noaa.gov/mgg/global)
topography maps, GMB allows building regular and stretched grids and creating land masks
and masks for arbitrary chosen depth level. Note that for the moment we consider regular
grids only, i.e., orthogonal grids with constant resolution in latitude and longitude, although
the mixed-resolution type grids (e.g. ORCA) might be envisaged for the future releases of
the SEAPODYM application with parameter estimation.

GMB was created and further developed as a plugin for SEAPODYM, which accom-
plishes grid generation, land mask construction and data interpolation on designed grids.
For interpolation of input environmental data such as ocean currents, temperature, oxygen
and primary production onto new grids, GMB includes a cubic splines interpolation routine
and for transferring sparse catch data averaged over square cells there is the routine for
redistributing data within new grid cells.

After downloading software create three directories in the folder GMB: maps, output
and data. In order to start working with GMB, you need to have ETOPO2 maps and
contour files. If you didn’t download them with GMB, you have two options: either extract
map directly from NOAA website Geodas or install GEODAS grid translator from . Current
version of GMB reads binary files with GRD98 header (extension g98), data should be
written in little-endian, 4-byte integer format. All these settings should be chosen while
retrieving map interactively from website or from installed GEODAS software.

To run GMB under Windows or Linux, one must have Java Runtime Environment in-
stalled (for latest version go to website ). In Windows, click on jar file in order to run the
software. If you are going to work with large, high resolution topography maps, it’s better
to allocate more memory by typing command from the current GMB directory:

C:\WINNT\system32\java.exe -Xmx512m -jar GMB.jar

in Command Prompt window or simply create shortcut for GMB and indicate it in a Target
field. For example,

C:\WINNT\system32\java.exe -Xmx512m -jar "C:\Seapodym\GMB\GMB. jar"

If you run GMB under Linux, type in terminal

java —-jar GMB. jar

from directory with jar file. Read GMB help (or directly readme.txt) for more details on
the functionalities implemented in this software.

For example, to create a 1° grid for Pacific Ocean domain as shown in Fig D2 and 3-layer
mask using GMB, extract the map for the area of interest with ETOPO topographic data
(Fig D2), follow the steps: choose the following menu commands (GMB user’s menu activates


http://www.ngdc.noaa.gov/mgg/global
http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html
http://www.ngdc.noaa.gov/mgg/geodas/geodas.html
http://java.sun.com/j2se/1.5.0/download.jsp
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¢ ETOPO Gridded Data x|

Grid Data
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OK Cancel

Figure D2: Loading the map of Pacific Ocean.

successively) or click on the corresponding buttons: 1) Load Map; 2) Build Grid; 3) Create
Mask; 4) Mask/Apply Boundary Filter. Available Etopo maps with different resolution are
stored in the directory maps, the files having extension ’.g98. While extracting geographic
area and buiding grid remember that approximation scheme of PDEs in SEAPODYM is
based on Arakawa A grid, so first, the domain coordinates must be extended by half of
a desired grid resolution, i.e to longitudeMin-.5Az, latitudeMax-.5Ay and so forth; and
second, the number of longitudinal and latitudinal grid nodes must be n, + 1 and n, + 1,
where n, x n, is the dimension of all model variables. The decision on the model grid
resolution should rely on the following information: 1) the dimension of available physical
and biogeochemical variables, either predicted with models (OGCM, NPZD) or observed, 2)
the size of the grid cells should be sufficiently small to resolve studied dynamical features,
3) the resolution of available geo-referenced fishing data.

Note that land mask created directly from topography data can be different from the
one being used in OGCM or NPZD models, that is why it is recommended to use the
data mask (mask, extracted from oceanographic and biogeochemical data) as an initial land
mask (use menu File/Load mask...). Adding more layers to the mask, e.g., based on the
depth defining epipelagic and mesopelagic layers, can be done in GMB as well (use menu
Mask/Mask properties... to set the depth and mask flag, then clicking "‘create mask"’
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Figure D3: Indo-Pacific regional domain with 1° grid and 3-layer mask.

will add another layer with specified properties). However, this method will work only in
case if depth of the layer is considered to be constant. For the definition of variable layer
depths a bit more complex procedure must be undertaken (see below). Since the resulting
land mask defines the complex boundary of computational domain, an important step to
make before saving the mask file, is to mask existing near-border cells which will cause the
biomass leak in the finite-difference approximation scheme of ADR equations. Leak occurs
when one computational cell is surrounded by three land cells (or if the ocean cells create
one-cell channel), as such layout of grid cells makes it problematic to create reflecting bound-
ary condition. The GMB software filters such boundary cells in one click (menu Mask/Apply
boundary filter...) . Finally, the mask is saved by GMB into a simple text file with the
table of numbers, masking land with 0 and ocean (computational) cells with 1, 2 and 3 etc.
according to the number of vertical layers specified for the simulation (see Fig. D3).

D.3 R scripts

Various R functions were written in order to facilitate data preparation as well as model
analyses and validation in SEAPODYM. Here we provide descriptions of only a few selected
routines that are essential in extraction of data from SEAPODYM DYM and ASCII files,
plotting outputs on a map and preparing fisheries data for simulations with or without
scenarios. These functions are part of the following libraries:
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dym-works/
read_varDYM.R
write_varDYM.R

The example of use of these read-write functions for DYM files
res<-read.var.dym(file.in,t0,tfin,region,deltaT)

where t0 and tfin are the combinations of two or three values (year,month,day), with
day which can be omitted for monthly time stepping (deltaT=30 by default). The returned
value of this function, i.e. variable res is a 1ist(x,y,dates,var,landmask) with the com-
ponents that are necessary to manipulate DYM data: vectors of coordinates and dates, a
variable var, extracted over region defined in the corresponding argument and a land mask.
There are other useful functions such as read.txy.dym to read only dimensions from a given
DYM file, and read.restart.dym to read the restart file of SEAPODYM. The syntax for
the function to write DYM file is

write.var.dym(file.out,dates,x,y,landmask,var)

This function does not return a value, instead the SEAPODYM variable data.out is written
toa DYM file a file.out with all dimensions and a land mask. Another library fisheries
contains R functions designed to work with SEAPODYM fisheries data files (effort and catch,
see C.1.1), namely, to read, write fisheries files, compute monthly climatology, introduce
effort multipliers, plot final distributions of climatological catch data :

fisheries/
call EC_climatology_func.R
libfd.R

make_EC_climatology.R
rw_sea_fisheries.R

The graphical outputs with fisheries data as well as of extracted DYM variables can be pro-
duced with the functions palettes and nice.map that are implemented in the following files:
maps/

Palette.R
plotmaps-GMT.R

The syntax for nice.map function, that will plot the geographical map of the selected region
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is as follows
nice.map(x,y,resolution=5,grid=FALSE,...)

where x and y are simple increasing values of coordinates, provided as, e.g. x=100:290,
y=-10:10 for tropical Pacific, or x=-70:20, y=-10:10 for tropical Atlantic. Then, the ex-
tracted var can be overlaid on the previously plotted map using generic R functions, e.g.
image(x,y,var). Note that functions in plotmaps-GMT.R use the Generic Mapping Tools
(GMT) libraries, therefore before using them check that GMT is installed on your computer.
If not, visit page http://gmt.soest.hawaii.edu/projects/gmt/wiki/BuildingGMT for in-
stallation instructions.

The installation and the use of these libraries requires two environment variables to be
declared in the user’s .bashrc file:

1 SEA_R_HOME: the path to the folder with all above R scripts

2 SEA_HOME: the main SEAPODYM directory, with folders called data (all forcings placed
here), run (model runs with parameter files and outputs) and fisheries (fisheries data
files).


http://gmt.soest.hawaii.edu/projects/gmt/wiki/BuildingGMT
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