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1. Introduction 

 

This study represents a contribution by Uruguay to the Southern Hemisphere Porbeagle Shark Stock Status 

Assessment, reporting the standardized catch rate of porbeagles captured by the Uruguayan longline fleet in the 

Southwestern Atlantic Ocean between 1982 and 2012.  

 
2. Materials and methods 

 

2.1 Fleet description 

 

The Uruguayan tuna fleet operated continuously between 1981 and 2012, but in two separate phases. Between 1981 

and 1991, the fleet was composed entirely of large-scale freezing vessels operating with a Japanese-style 

multifilament longline (averaging 2,000 hooks per set), reaching a total of 15 vessels at its peak in 1984. After 1992 

the majority of these vessels were replaced by small-scale fresh-fishing vessels that utilized an American-style 

monofilament longline (averaging 1,000 hooks per set), with the exception of two vessels that utilized Spanish-style 

multifilament longline (averaging 2,200 hooks per set) (Mora and Domingo 2006, Domingo et al. 2008). All vessels 

in the last period (both the American and Spanish-type) set their fishing gears at shallower depths than their 

Japanese-style counterparts in the first period.  

 

2.2 Database 

 

Data were obtained from the logbooks of the Uruguayan longline fleet that operated in the South Atlantic Ocean 

between 1981 and 2012 (Figure 2). Date, geographic position (latitude and longitude) and sea surface temperature 

(SST in Celsius degrees) at the beginning of the set, effort (number of hooks) and gilled and gutted weight (GWT) 

of L. nasus captured were recorded for each set.  

 

Given the change in the fleet in 1992, standardization analyses were performed both considering the time series as a 

whole (1982-2012) and as two distinct periods according to fishing gear characteristics: 1982-1992 and 1993-2012.  

 

2.3 Data filtering 

 

A total of 20,906 sets were deployed between 1981 and 2012. Eighty percent of the sets were considered for the 

standardization. The other 20% were eliminated for several reasons, such as missing information about geographic 

position and/or SST; and missing capture information, with all shark captures grouped as ‘sharks’. All 1981 sets 

were eliminated because the fleet did not operate until late September. In addition, since porbeagle sharks have a 

southern distribution and were only captured within a restricted subset of the total fishing distribution of the 

Uruguayan tuna fleet, we only used data in the area south of 34ºS. We also omitted sets east of longitude 39º W, as 

there was little effort in this area. Overall, we analyzed a total of 16,741 fishing sets deployed between 1982 and 

2012 in the area located between 34-48º S and 60-39º W (Figure 1), representing a total effort of 23,952,386 hooks. 

 

2.4 Variables used 

 

Nominal CPUE was calculated as kilograms of porbeagle (GWT) per 1,000 hooks. Seasons (Quarter) were 

considered as quarters: 1st (January-March), 2nd (April-June), 3rd (July-September) and 4th (October- December). 

Sea surface temperature (SST) and Latitude were fitted as continuous variables to facilitate identification of the 

relationships. Vessel identity (Vessel) was fitted as a categorical variable.  
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To account for the variability among operations in the Uruguayan tuna fleet we also considered three categories of 

vessel based on a cluster analysis performed by Pons et al. (2012) to group them according to similar characteristics 

(i.e. length, motor power and gross register tonnage). Storage characteristics affect the vessel’s autonomy and 

effective days of fishing per fishing trip, and may also affect the species targeted due to their effects on fish quality 

and marketability, so we also considered two vessel categories according to the type of storage utilized, namely, 

frozen storage or fresh storage.  

 

Table 1 summarizes the explanatory variables used for the standardization.  

 

2.5 Delta-lognormal Model 

 

Many species, especially non-target species (or bycatch) have a high proportion of zero catches with positive effort. 

In order to deal with this type of data, methods such as the Delta-Lognormal (Pennington, 1996, Lo et al., 1992; 

Stefansson, 1996, Ortiz and Arocha, 2004) have been applied. Delta or hurdle methods analyze separately the 

probability that a null or positive observation occurs, and the positive observations. The approach employs two 

models, the first part assuming a binomial distribution, and the second part a positive distribution such as the 

lognormal or gamma.  

 

In preliminary and exploratory analyses on the full dataset we fitted the catch rate data with generalized linear 

models, using the function glm() in R (R Core Team 2016) and the influ library (Bentley et al. 2011). The influ 

package is a useful resource for model exploration that is currently only available for glm. Models were fitted using 

Year, Quarter, and Vessel as categorical variables, and Latitude and SST as continuous variables using cubic splines 

with 5 degrees of freedom.  

 

For the final analyses with the dataset separated into two periods, we used generalized additive mixed models, 

implemented with the functions gam and gamm from the package mgcv (Wood 2011). The mixed modelling 

approach is more flexible than generalized linear modeling. For example, vessel effects can be included as random 

effects, which reduces problems with inestimable parameters. The gam function was used to implement simple 

mixed models and allowed easier hypothesis testing, while adding correlation structure required the gamm function. 

Given that both functions involve generalized additive mixed models, we refer to both using the term gamm.  

 

Models were fitted using Year, Quarter, and Vessel as categorical variables, and Latitude and SST as continuous 

variables using smooth terms with the function s(). Interactions between smooth terms were implemented with the 

function te(), to allow the degrees of freedom to vary by parameter.  

 

We used AIC for both components of the gamm Delta Model to determine the set of explanatory factors and 

interactions that explained most of the variability in the data. Hypothesis testing was carried out for the fixed effects 

component after fitting models with maximum likelihood (ML), and for the random effects after fitting with 

restricted maximum likelihood (REML).  

 

Autocorrelation in the residuals was explored using gamm models and an autoregressive process of order 1, which 

was grouped by vessel and implemented using the correlation structure class ‘corAR1’.  

 

Q-Q plots are presented for the log-transformed residuals of the lognormal components of the full period, and for 

each of the split periods. 

 

CPUE indices were estimated by predicting the proportion of positive sets and the catch rate in positive sets for each 

year, at the median of all covariate values for continuous variables, and the mode for categorical variables. 

Confidence intervals for each year were based on 2 standard errors of the lognormal component of the delta 

lognormal model.  

 

3. Results and discussion 

 
A total of 737.637 tons of porbeagle sharks were registered during 1982-2012 in the analyzed area. The maximum 

number of sets occurred in 1984, which corresponds with the period when the most vessels were operating (n=12 

after data filtering). Between 1984 and 1993 the number of sets decreased, and subsequently increased again to a 

second smaller peak in 2005. From this year onwards the number of sets per year declined (Figure 2). The 

percentage of positive captures among the total sets was 16.4% for the entire period with a maximum of 57.2% in 



3 
 

1982 and a minimum of 0.9% in 2000. Figure 2 shows the percentage of positive sets and total effort (in number of 

sets) for each year between 1982 and 2012. 

 

3.1 Whole period (1982-2012) 

  

Model comparisons for the Binomial and Lognormal models are shown in Table . For both the mean catch rates in 

the positive sets and for the proportion of positives/total sets the factors Year, Quarter, SST, Latitude, and Vessel 

were significant, with significant interactions between SST and Quarter. For the binomial model there was also a 

significant interaction between Latitude and Quarter. Storage factor (frozen vs. fresh) and Vessel Category were 

also explored and found to explain less variation than Vessel. Interactions with the Year effect were not considered, 

due to low sample sizes, lack of balance in the data across Year, and the need to estimate the Year effects. Results 

are also presented for a model without interaction terms. 

 

The factors selected for the Lognormal and Binomial components were:  

 

Binomial Model: positive/total = Year + Quarter + Vessel + ns(Latitude, df=5)*Quarter + ns(SST,df=5)*Quarter 

  

Lognormal Model: log (CPUE) = Year + Quarter + Vessel + ns(Latitude, df=5)*Quarter + ns(SST,df=5) 

 

Diagnostic plots for both the Lognormal GLM models with and without interactions terms confirmed model 

assumptions of homogeneity of variance and lognormal distribution of the CPUE (Error! Reference source not 

found.).  

 

The influence plots demonstrate the sizes and patterns of variable effects on catch rates (Figures 4 and 5). They 

indicate a strong effect of latitude, with much higher catch rates further south even after accounting for SST. Note 

that the increase in nominal CPUE in 2010-2012 appears to be due to fishing further south. SST also has a strong 

effect on catch rate, with much lower catch rates at higher temperatures. Catch rates vary by quarter, which is 

consistent with seasonal movements of vessels with the fishery, and porbeagle sharks by season. Vessel effects are 

very influential, with large differences between individual vessels.  

 

3.2 Split periods (1982-1992 and 1993-2012) 

 

Comparisons of the fixed effects in the Binomial and Lognormal models are shown in Table . For each period, and 

for both the mean catch rates in the positive sets and for the proportion of positives/total sets the factors Year, 

Quarter, SST and Latitude were significant, with significant 3-way interactions between SST, Quarter and Latitude. 

Vessel does not appear in this table because it was fitted as a random effect. For each model component and period, 

the models including Vessel as a random factor had lower AIC values than those without random effects (Table 4). 

However, the results of interest were very similar for the model without random effects and these are presented in 

the figures for clarity. Results are also presented for a model without interaction terms.  

 

The fixed factors selected for the Lognormal and Binomial components were:  

 

Lognormal: log (CPUE)=Year + Quarter + te(Latitude, SST, by = Quarter, k = c(10,10)) + s(Vessel, bs = "re") 

 

Binomial: positive/total=Year + Quarter + te(Latitude, SST, by = Quarter, k = c(10,10)) + s(Vessel, bs = "re") 

 

Diagnostic plots for both the final Lognormal additive models with and without random effects confirmed model 

assumptions of lognormal distribution of the CPUE (Figure 2).  

 

The autocorrelation plots indicate some autocorrelation for data from the same vessels (Figure 7), supporting its 

inclusion in the model. However, it has only a small effect on variable pattern plots and very little effect on indices.  

 

The gamm plots show similar patterns to the influence plots, but the confidence intervals on the smooth terms 

demonstrate the low confidence for estimates at extreme values of SST and Latitude (Figures 8, 9, 10 and 11). The 

Latitude effect for the early period surprisingly declines south of 38 °S, but is uncertain and based on very little 

fishing effort (see Figure ). The binomial effect plots show stronger patterns than the lognormal plots (Figures 8, 9, 

10 and 11). There appears to be more information in the presence and absence of porbeagles in the catch than in the 

weight of sharks caught per positive set.  
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Standardized indices and confidence intervals for both periods are presented in Table 5 and 6. Standardized CPUE 

values increase over most of the first part of the time series, when catch rates are higher (Figures 12 and 13). In the 

second part of the time series, after the fleet changed its fishing gear from a Japanese-Style to an American-Style 

longline, catch rates are in general much lower, apart from a few of the early index values for the new fleet. There is 

no evidence of change in the catch rate from 1998-2012, but catch rates are very low and variability in the indices is 

very high, so the information content may be limited. Although using a different standardization method and based 

on observer program data instead of logbooks, Pons & Domingo (2010) also found no apparent trend in porbeagle 

catch rates between 1998 and 2012.    

 

These results provide useful information about factors affecting catch rates of porbeagle sharks, showing important 

effects of SST, Latitude and Vessel. The substantial changes in catch rate after the transformation of the fleet from 

Japanese style to American-style longlines are independent of SST and Latitude, suggesting that fishing method 

factors such as set depth or bait type may affect porbeagle catch rates. We did not have the data to standardize for 

these factors, but Japanese-style longlines typically operate at deeper depths than American-style longlines 

(Domingo et al. 2014). Thus it is possible that fishing depth may affect porbeagle catch rates. Reporting reliability 

may also be significant in differences among vessels.  
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Table 1. Summary of independent variables used in the GLM models. The numbers in parentheses refer to the 

number of categories in each variable. ** L=length, HP= engine power (in horse power), GRT= gross registered 

tonnage, see SCRS/2011/114. 

Variable Type Observations 

Year Categorical (31) Period: 1982-2012 

Quarter Categorical (4) Quarter 1: January-March 

  

Quarter 2: April-June 

  

Quarter 3: July-September 

  

Quarter 4: October-December 

Latitude Continuous 34-47°S 

   Sea Surface Temperature 

(SST) Continuous Range: 8 to 29° 

  

95% interval: 13 to 24.8° 

  

 

Vessel cluster Categorical (3) 1: Mean L 51 m; Mean HP 1256; Mean GRT 322 ** 

  

2: Mean L: 36 m; Mean HP 923; Mean GRT 286 ** 

  

3: Mean L: 21 m; Mean HP 350; Mean GRT 110 ** 

Storage Categorical (2) C: frozen storage of catch 

  

F: fresh storage of catch 

   

Vessel Categorical(45) 

Unique vessels, 21 in the first period, and 28 in the 

second period 
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Table 2. Table of models for proportion of positive sets (Binomial) and positive catch rate (Lognormal) models for 

the period 1982-2012. ‘d.f.’ refers to degrees of freedom of the model components; ‘deltaAIC’ is the difference in 

AIC from the best model, which is indicated with deltaAIC of 0. 

 

Model structures and AIC for proportions of non-zero sets 

Model # Model AIC deltaAIC df 

1 Yr + ns(SST) 7345.4 717.4 36 
2 Yr + Vessel + ns(SST) 7011.8 383.7 64 
3 Yr + Vessel + ns(Lat) + ns(SST) 6890.2 262.2 68 
4 Yr + Vessel_cat + C_vs_F + ns(SST) 7286.2 658.2 39 
5 Yr + Qtr + Vessel + ns(Lat) + ns(SST) 6742.2 114.1 71 
6 Yr + Qtr + Vessel + ns(Lat) * Qtr + ns(SST) 6699.5 71.4 83 
7 Yr + Qtr + Vessel + ns(Lat) * Qtr + ns(SST) * Qtr 6628.0 0.0 98 

 

 Model structures and AIC for positive catch rates 

Model # Model AIC deltaAIC df 

1 Yr + ns(SST) 8364.6 230.8 37 
2 Yr + Vessel + ns(SST) 8275.0 141.2 66 
3 Yr + Vessel + ns(Lat) + ns(SST) 8160.1 26.3 70 
4 Yr + Vessel_cat + C_vs_F + ns(SST) 8311.2 177.4 40 
5 Yr + Qtr + Vessel + ns(Lat) + ns(SST) 8152.4 18.6 73 
6 Yr + Qtr + Vessel + ns(Lat) * Qtr + ns(SST) 8133.8 0.0 85 
7 Yr + Qtr + Vessel + ns(Lat) * Qtr + ns(SST) * Qtr 8138.4 4.6 100 
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Table 3: Table of models for proportion of the periods 1982-1992 and 1993-2012, for the proportions of non-zero 

sets (binomial distribution) and positive catch rate (lognormal distribution). ‘d.f.’ refers to degrees of freedom of the 

model components; ‘deltaAIC’ is the difference in AIC from the best model, which is indicated with deltaAIC of 0. 

Pd Type # Model AIC Delta-AIC df 

1982-
1992 Bin 5 Year + Qtr + s(SST, k = 12) + s(Lat, k = 9) 3894.0 79.5 33.3 
  6 Year + Qtr + s(SST, k = 20) + s(Lat, by = Qtr, k = 9) 3867.1 52.6 39.4 
  7 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, k = 9) 3852.7 38.2 48.6 
  8 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, by = Qtr, k = 9) 3834.5 19.9 53.8 
  9 Year + Qtr + te(Lat, SST, by = Qtr, k = c(10,10)) 3814.6 0.0 122.2 
       
 Logn 5 Year + Qtr + s(SST, k = 12) + s(Lat, k = 9) 6032.7 35.7 29.4 
  6 Year + Qtr + s(SST, k = 20) + s(Lat, by = Qtr, k = 9) 6038.4 41.3 34.7 
  7 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, k = 9) 6027.1 30.0 32.4 
  8 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, by = Qtr, k = 9) 6032.1 35.1 44.3 
  9 Year + Qtr + te(Lat, SST, by = Qtr, k = c(10,10)) 5997.1 0 81.1 
       
1993-
2012 Bin 5 Year + Qtr + s(SST, k = 12) + s(Lat, k = 9) 2584.3 79.0 55.1 
  6 Year + Qtr + s(SST, k = 20) + s(Lat, by = Qtr, k = 9) 2574.3 69.0 61.6 
  7 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, k = 9) 2557.1 51.8 65.4 
  8 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, by = Qtr, k = 9) 2546.9 41.6 72.8 
  9 Year + Qtr + te(Lat, SST, by = Qtr, k = c(10,10)) 2505.3 0.0 127.8 
       
 Logn 5 Year + Qtr + s(SST, k = 12) + s(Lat, k = 9) 2059.5 52.5 57.5 
  6 Year + Qtr + s(SST, k = 20) + s(Lat, by = Qtr, k = 9) 2040.9 33.8 64.7 
  7 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, k = 9) 2046.9 39.8 69.0 
  8 Year + Qtr + s(SST, by = Qtr, k = 12) + s(Lat, by = Qtr, k = 9) 2029.1 22.0 71.5 
  9 Year + Qtr + te(Lat, SST, by = Qtr, k = c(10,10)) 2007.1 0 87.6 
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Table 4: AIC estimates for gamm models fitted with and without random effects for Vessel. To compare random 

effects, the models are fitted using REML. Each set of results comes from gamm model 9.  

Period Distribution Model df AIC dAIC 

1982-1992 Binomial No RE 61.5 3911.8 60.2 
  With RE 62.2 3851.6 

       

1993-2012 Binominal No RE 71.4 2658.9 114.6 
  With RE 88.6 2544.2 

       

1982-1992 Lognormal No RE 56.0 6037.5 11.4 
  With RE 62.8 6026.1 

       

1993-2012 Lognormal No RE 61.0 2117.3 79.9 
  With RE 77.7 2037.4 
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Table 5: Indices for the period 1982-1992, including 95% confidence intervals. Each set of results comes from 

gamm model 5. 

Year Index 2.5% CI 97.5% CI 

1982 1.86 1.86 1.86 

1983 0.65 0.51 0.83 

1984 0.20 0.15 0.25 

1985 0.60 0.46 0.78 

1986 0.40 0.30 0.54 

1987 0.62 0.46 0.83 

1988 0.98 0.73 1.31 

1989 1.46 1.09 1.97 

1990 2.10 1.54 2.86 

1991 0.83 0.52 1.34 

1992 1.30 0.88 1.93 
 

 

Table 6: Indices for the period 1993-2012, including 95% confidence intervals. Each set of results comes from 

gamm model 5. 

Year Index 2.5% CI 97.5% CI 

1993 2.37 2.37 2.37 

1994 7.67 2.88 20.43 

1995 0.35 0.08 1.57 

1996 2.72 1.05 7.05 

1997 1.09 0.39 3.07 

1998 0.22 0.07 0.68 

1999 0.98 0.34 2.83 

2000 0.12 0.03 0.55 

2001 0.31 0.09 1.09 

2002 0.21 0.07 0.60 

2003 0.92 0.37 2.29 

2004 0.12 0.04 0.35 

2005 0.33 0.13 0.87 

2006 0.53 0.21 1.35 

2007 0.06 0.02 0.21 

2008 0.69 0.26 1.84 

2009 0.04 0.01 0.12 

2010 0.72 0.23 2.29 

2011 0.20 0.07 0.58 

2012 0.33 0.11 1.00 
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Figure 1. Total distribution of the Uruguayan pelagic longline fleet (blue dots), and selected sets for standardization 

of Lamna nasus captures (red dots). 

 

 

Figure 2. Proportion of porbeagle positive sets (open squares) and total effort in number of sets (solid circles) for 

the period 1982-2012. 



12 
 

 

 

Figure 3: Plots of residuals from CPUE standardized using glm models 5 and 6, for positive sets of porbeagles 

caught by the Uruguayan longline fishery for the period 1982-2012. The top Q-Q plot is for glm model 5, the middle 

Q-Q plot is for glm model 6, and the lower residual histogram is for glm model 5. 
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Figure 4: Influence plots for binomial glm Model 5 (without interactions), showing the distributions of parameter 

values by year and their influence on the predicted probability per set of catching porbeagle sharks. Influence plots 

are shown for latitude, quarter, SST, and Vessel. 
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Figure 5: Influence plots for positive glm Model 5 (without interactions), showing the distributions of parameter 

values by year and their influence on the predicted catch per set. Influence plots are shown for latitude, quarter, SST, 

and Vessel.  

  



15 
 

 
 

Figure 2. Q-Q plots of residuals from standardized CPUE for positive sets of porbeagles caught by the Uruguayan 

longline fishery for the periods 1982-1992 (left) and 1993-2012 (right). The plots above and below are for gamm 

models considering and not considering interaction terms, respectively.  
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Figure 3: Autocorrelation plots showing the effects of adjustment for autocorrelation on the best fitting gamm 

models, which was model 9 in each case. Two plots are shown for each of the four models. Models for 1982-1992 

are on the left, and 1993-2012 on the right. Binomial models are above and lognormal models below.  
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Figure 8: Plots of effects for gamm model analysis of the proportions of non-zero sets in the period 1982-1992. 

Dashed lines correspond to the 95% confidence interval of the estimated effect size.  
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Figure 9: Plots of effects for gamm analysis of the catch rates in non-zero sets in the period 1982-1992. Dashed 

lines correspond to the 95% confidence interval of the estimated effect size. 
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Figure 10: Plots of effects for gamm analysis of the proportions of non-zero sets in the period 1993-2012. Dashed 

lines correspond to the 95% confidence interval of the estimated effect size.  
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Figure 11: Plots of effects for gamm analysis of the catch rate in non-zero sets in the period 1993-2012. Dashed 

lines correspond to the 95% confidence interval of the estimated effect size.  
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Figure 12: Normalized standardized indices of abundance in biomass for porbeagle caught by the Uruguayan 

pelagic longline fleet. The upper (1982 - 1992) and lower (1993 – 2012) indices are on different scales. Intervals 

represent the 95% confidence interval from the lognormal part of the analysis. Each set of results comes from gamm 

model 5 (without interactions).  
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Figure 13: Normalized standardized indices of abundance in biomass for porbeagle caught by the Uruguayan 

pelagic longline fleet, with y axis on log scale. The upper (1982 - 1992) and lower (1993 – 2012) indices are on 

different scales. Intervals represent the 95% confidence interval from the lognormal part of the analysis. Each set of 

results comes from gamm model 5 (without interactions). 

.  


