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a b s t r a c t

We focus on the zero-catch problem of CPUE (catch per unit effort) standardization. Because the traditional
CPUE model with a log-normal error structure cannot be applied in this case, three methods have often
been utilized as follows:

(1) Ad hoc method adds a small constant value to all response variables.
(2) Catch model with a Poisson or negative-binomial (NB) error structure.
(3) Delta-type two-step method such as the delta-normal model (after estimating the ratio of zero-catch

using
a logit or probit model, a model such as CPUE log-normal or Catch-Poisson is applied to CPUE without
Tweedie distribution model
Zero-catch problem

zero-data).
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1. Introduction

Catch per unit effort (CPUE) is an important concept which is
corresponding to the relative stock size and usually assumed to be
proportional to the stock abundance. However, the nominal CPUE
may include spatiotemporal effects such as area, season and var-
ious environmental factors like sea surface temperature. In order

∗ Tel.: +81 543 36 6000x43; fax: +81 543 35 9642.
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istical problems with each of these methods.
the CPUE standardization mainly using the Tweedie distribution model
ta (silky shark, Carcharhimus falciformis, in the North Pacific Ocean caught
cluding many observations with zero-catch (>2/3rd) and tuna fishery data
nus albacares, in the Indian Ocean caught by Japanese commercial vessels)
s not so high (<1/3rd). The Tweedie model is an extension of compound
e stochastic process where the weight of the counted objects (i.e., number
n and has an advantage of handling the zero-catch data in a unified way.

date models, the Catch-NB model, ad hoc method, Delta-lognormal model
and Tweedie distribution, through CPUE analyses of actual fishery data in
ance. Square error and Pearson’s correlation coefficient were calculated
d the corresponding predicted CPUE using the n-fold cross-validation.

the trend of CPUE between years and model performance between the

model were found to be not so large in the example of yellowfin tuna
tatistical performance of Tweedie distribution is rather better than Delta-

distribution and ad hoc method in the example of silky shark (by-catch
ar trend of ad hoc method was found to be quite different from that of

ther two models. Model performance of the Tweedie distribution is good
alidation using the fishery data if including many zero-catch data such as

© 2008 Elsevier B.V. All rights reserved.

to remove these various effects from the nominal CPUE and to
extract the year trend proportional to the stock density, some “stan-
dardization” has often been performed using various statistical
methods. Such methods are called CPUE standardization (Gavaris,
1980).

CPUE standardization is nowadays indispensable for fish stock
assessment because standardized CPUE is used for stock assess-
ment models as a tuning index and it has largely affects on the
estimated results of stock status in many cases.

As a statistical method, the generalized linear model (GLM)
(Dobson, 1990) including analysis of covariance (ANCOVA), which

http://www.sciencedirect.com/science/journal/01657836
mailto:hshono@affrc.go.jp
dx.doi.org/10.1016/j.fishres.2008.03.006
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is expressed as the following formulae in the matrix form, has been
usually used for CPUE standardization.

Y = X� + ε,

Y = (yi) =

⎡
⎣

y1
...

ys

⎤
⎦ , X = (xij) =

⎡
⎣

x11 · · · x1p

...
. . .

...
xs1 · · · xsp

⎤
⎦ ,

� = (�j) =

⎡
⎣

�1
...

�p

⎤
⎦ , ε = (εi) =

⎡
⎣

ε1
...

εs

⎤
⎦

E[Y] = � = g−1(X�),
Var[Y] = � Var[�]

where Y: response variable; X: explanatory variables (covariate
vector/design matrix); �: unknown parameters; ε: error term;
g( ): link function; �: dispersion parameter; �: expectation of the
response variable; suffix i = 1, . . ., s (s: sample size) and j = 1, . . ., p
(p: number of parameters).

In this study, we mainly applied the two types of GLM, CPUE
model (model-A) and catch model (model-B), which are described
as follows:

E[Y] = E[CPUE] or E[log(CPUE)] = � = g−1(X�) (model-A)

E[Y] = E[Catch] = (Effort) × � = (Effort) × g−1(X�) (model-B)

Remark. (Effort) is basically assumed as the offset in the model-B.

In many CPUE analyses, the following CPUE log-normal model
(i.e., CPUE model with log-normal error, ANCOVA-type) is often
utilized.

E[log(CPUE)] = (Intercept) + (Year) + (Area) + (Season)

+(enviornmental factors, fishing gears,

operating devices, etc.) + · · · + (Interactions) (1)

where (Year): effect of year, (Area): effect of area; (Season): effect
of month/quarter; (environmental factors, fishing gears, operating
devices, etc.): effect of environmental factors such as SST, fishing
gears, operating devices, etc. (Interactions): two way interactions,
log(CPUE) ∼ N(�, �2) and g( ): identity.

However, the analysis of a covariance model with a normal error
structure cannot be applied to the “zero-catch” data with which

catch is equal to zero because the natural logarithm of zero is equal
to negative infinity. Several statistical approaches have been pre-
viously used for the zero-catch problem in the field of fish stock
analysis as follows:

(1) Use of the ad hoc method that a constant (viz. a small value) is
added to all response variables (i.e., CPUE) as follows (Robson,
1966):

E[log(CPUE + constant)] = (Intercept) + (Year) + (Area)

+(Season) + (EMT) + · · ·
+(Interactions) (2)

(2) Use of the Catch-Poisson or Catch-Negative-Binomial (NB)
regression model (i.e., Catch model with Poisson/negative-
binomial error, GLM-type). In these models, catch not CPUE,
which is defined as a categorical variable, is set to the response
variable (Reed, 1996) in the model-B described previously.

(3) Use of the delta-type two-step model (e.g., Delta-lognormal
model) (Lo et al., 1992) or zero-inflated model (Lambert, 1992).
h 93 (2008) 154–162 155

In this two-step method, the ratio of zero-catch is estimated by
the logit model with logit-link function in the 1st step as:

log
(

q

1 − q

)
= (Intercept) + (Year) + (Area) + · · · + (Interactions)

+(log(Effort)) (3)

where E[X] = q, X ∼ Binomial (�), g(x) = log(x/(1 − x)) and

X =
{

1 (if Catch > 0)
0 (Otherwise)

.

After that, the CPUE log-normal or Catch models to the data with
a positive catch (i.e., CPUE) is applied in the 2nd step.

In fact, the ad hoc method (1) (that the small constant value
is uniformly added to all response variables) has been previously
often used. Although this way is easy to carry out, it leads to a bias
in the interval estimate. Theoretically it is possible to avoid this bias
by subtracting the constant from the estimate with regards to the
point estimation. Although the estimation of unknown parameters
is actually performed by adding a small value to all CPUE, in practice
this incurs a bias. We also have a problem in the ad hoc method
regarding what value is adequate as a constant term to add to all
response variables. Although ICCAT (International Commission for
the Conservation of Atlantic Tunas) recommended the use of 10%
of the overall mean CPUE as the constant (Anon., 1997), the reason
seems not to be clear.

Catch model with Poisson or negative-binomial error structure
(2) has been utilized for CPUE standardization in the late 1990s.
Although the Catch-Poisson model was initially used, the constraint
that the expectation is equivalent to the variance is too strict (i.e.,
the Catch-Poisson model does not fit observed CPUE well). Thus, the
Catch-negative-binomial model has been gradually applied instead
of Poisson distribution after the negative binomial distribution was
included into the GLM procedure of SAS/STAT package (Version 9.1;
SAS Institute Inc., Cary, NC, USA) (SAS, 2004).

Delta-type two-step model (3) that (i) estimates the ratio of
zero-catch by logit or probit model in Eq. (3) and (ii) applies the
CPUE-log-normal or Catch model to the part of non-zero data
has been recently used for CPUE standardization. In this two-
step model, the combination of explanatory variables which are
statistically significant may differ in step (i) and (ii), and this com-
plicates model interpretation. In addition, it is sometimes difficult
to include the (Year × Area) interactions as a fixed effect especially
in the 1st step of the delta-type two-step model due to the missing

data even though which generally appears to be statistically signifi-
cant because of the wide range of the spatiotemporal movement in
the tuna species. For general discussion about various problems
of CPUE standardization including the issue of the (Year × Area)
interaction, see Maunder and Punt, 2004.

In the delta-type two-step model, it is possible to esti-
mate unknown parameters in step (i) and (ii) simultaneously
by connecting log-likelihood functions and this method is
called the zero-inflated model (Lambert, 1992). Zero-inflated
Poisson/negative-binomial model was applied for CPUE standard-
ization of by-catch species caught by the purse seine fishery
(Kawakita et al., 2005). Because the zero-inflated models are not
included into the exponential family different from the Tweedie
distribution, there is a possibility of misspecification of the struc-
ture in the zero-inflated model as follows:

- The consistent estimator of the maximum likelihood estimator
may not be obtained under only the assumption of the variance
structure.

- The moment estimator may not be asymptotic equivalent to the
maximum likelihood estimator and so on.
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In fact, the exponential family with equal to or less than
quadratic variance function is limited to the following six proba-
bility distributions (Normal, Gamma, Poisson, Hyperbolic secant,
binomial and negative binomial) (Morris, 1982).

In this study, we discuss the zero-catch problem, which means
that CPUE-lognormal model (where the natural logarithm of CPUE
is set as the response variable) cannot be mathematically applied in
the case of including zero-catch data. We utilized the Tweedie dis-
tribution model, in which zero-data are uniformly dealt with, and
compared the Tweedie model to the previously used methods such
as the ad hoc method, Catch-NB model and delta-type two-step
method (Delta-lognormal model) through two case studies based
on the actual fishery catch and effort data. The Tweedie model was
applied for CPUE analyses of Patagonian toothfish (Candy, 2004).

The section composition of this paper is as follows.
In this section, we describe the background of zero-catch prob-

lem and introduce several ways utilized for CPUE standardization
in the case of including zero-catch data.

In the second section, we describe the Tweedie distribution
model, mainly the characteristics, advantages and disadvantages,
and the procedure of parameter estimation for the following case
studies.

In the third section, we compare the Tweedie model with the
ad hoc method using the catch and effort data for yellowfin tuna in
the Indian Ocean.

In the fourth section, we compare the four models (i.e.,
Tweedie model, Catch-NB model, Delta-lognormal model and ad
hoc method) using the catch and effort data for silky shark in the
North Pacific Ocean.

2. Materials and methods

In this section, we focus on the Tweedie distribution model
in which zero-data can be uniformly handled (Tweedie, 1984).
The probability density function of the Tweedie distribution is
expressed in the following formula (4).

f (y : �, �2, p) = a(y : �2, p) exp
{

− 1
2�2

d(y : �, p)
}

(4)

where �: location parameter; �2: diffusion parameter; p: power
parameter.

Remark. d(y: �, p) is called the unit deviance.
The Tweedie model can be transformed to the exponential fam-
ily using an appropriate change of variables. This enables us to
discuss using the framework of quasi-likelihood in the generalized
linear model (GLM). It is known that these estimates of regres-
sion coefficients by the Tweedie model have asymptotically good
performance in which the sample mean expresses the likelihood
estimator of expectation (Jorgensen, 1997). We can transform into
an exponential family though adequate change of variables and the
power parameter (p) is also shown in the variance function of the
following expression (5). In this paper, we used the following GLM
framework shown in Eq. (5) with log-link function as a Tweedie
regression model.

E[Y](= E[CPUE] = �)
= exp{(Intercept) + (Year) + · · · + (Interactions)}

Var[Y](= �Var[�]) = �2�p
(5)

where �2 is defined by the parameter � in the model-A described
previously.

The Tweedie model can express the Poisson, Gamma and inverse
Gaussian distributions if the power-parameter (p) is 1, 2, and 3,
respectively.
h 93 (2008) 154–162

This power-parameter (p) can be defined as an arbitrary real
number except for 0 < p < 1 and we are mainly interested in the
range of 1 < p < 2. Because the Tweedie model is expressed as the
compound Poisson distribution (described as the formula (6)) if
1 < p < 2 and then which seems to be appropriate for CPUE analysis
of by-catch species such as shark with a lot of zero-catch data, we
mainly focused on such case (if 1 < p < 2) in this paper.

Y =

⎧⎪⎨
⎪⎩

N∑
k=1

Xk (N = 1, 2, 3, . . .)

0 (N = 0)

⎫⎪⎬
⎪⎭ (6)

where X1, . . ., XN is identical and independently Gamma distributed
with mean m and variance ˛−1mp (˛ is defined in Eq. (9)) and N is
Poisson distributed with mean �. Variable Y in formula (6) corre-
sponds to the CPUE value in the following case studies. In addition,
the probability density distribution of the Tweedie model in Eq. (4)
and the (quasi-)deviance (D) are explicitly shown as the following
formula (7) if and only if 1 < p < 2.

d(y : �, p) = 2

{
max (y, 0)2−p

(1 − p)(2 − p)
− y�1−p

1 − p
+ �2−p

2 − p

}
,

a(y : �2, �) =
{

�2(˛+1)y˛

(1 − p)˛(2 − p)

}n
1

n!	 (n˛)y
,

D = 2
s∑

i=1

y2−p
i

− (2 − p)yi�
1−p
i

+ (1 − p)�2−p
i

(1 − p)(2 − p)
,

(7)

where ˛ = (2 − p)/(p − 1) and s is the sample size.
In this study, we carried out the parameter estimation based on

the following procedure.

(i) Estimate the power parameter (p) by maximizing the profile
log-likelihood across the grid values of (p) (see Figs. 2 and 6) in
the range of 1 < p < 2 through the explicit form of the probability
density function in Eq. (7).

(ii) Estimate the regression coefficients using the framework of
quasi-likelihood in the GLM fixing the value of p in the esti-
mate obtained in the step (i) also based on the formulae of Eq.
(7) including the deviance.

The probability density function f of the Tweedie distribution in
Eq. (4) is also written as follows (Smyth, 1996):
f (y : �, �2, p) = P(N = 0)d0(y) +
∞∑

l=1

P(N = 1)gZ|N=1(y) (8)

= e−�d0(y) +
∞∑

l=1

�l e−�

l!
yl˛−1 e−y/



l˛	 (l˛)

where d0 is the Direct delta function, gZ|N is the conditional density
of Z given N and Z has the same distribution as Y (shown in Eq. (6))
with

� = �2−p

�2(2 − p)
, ˛ = 2 − p

p − 1
, 
 = �2(p − 1)�p−1,

m = �2(2 − p)�p−1 (9)

e−� shows the predicted probability of a zero-catch.
On the other hand, there are some disadvantages that (1) overall

model comparison between Tweedie distribution and other sta-
tistical models is generally difficult except for the evaluation of
each estimate value. (2) Common information criterion such as AIC
is not available due to using the framework of quasi-likelihood.
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Although a new information criterion Q-AIC (quasi-AIC), which
can be applied to the Tweedie distribution model, as suggested
by Burnham and Anderson (1998), the theoretical validity seems
to be questionable. The Tweedie model becomes an expansion of
the power parameter of relationship between mean and variance
to continuous variable.

We evaluated the accuracy of the four models using n-fold
cross-validation that (1) divide all data from the nth sub-
datasets randomly (2) calculate the predicted values concealing the
observed ones of each sub-dataset on purpose. We utilized the cor-
relation coefficient and the square error between the observed and
the corresponding predicted values for validation in the candidate
models and checked the trends of standard residual based on the
correlation plots.

In this study, we compared the Tweedie model, the ad hoc
method (the Catch-negative-binomial model and the Delta log-
normal model) using two case studies of actual fishery data,
yellowfin tuna in the Indian Ocean by Japanese commercial long-
line vessels and silky shark in the North Pacific by Japanese training
longline vessels. We utilized R (Version 2.5.0) and SAS (Version
9.1.3) for these computations.

2.1. Case study 1: yellowfin tuna in the Indian Ocean by Japanese
commercial longline vessels
We performed CPUE standardization for yellowfin tuna in the
Indian Ocean using catch and effort data caught by Japanese com-
mercial longline vessels. The purpose is to compare between the ad
hoc method where a constant term (viz. small value) is added to all
response variables (i.e., CPUE) and the Tweedie distribution model.
We used aggregated data (5 × 5 degree square/monthly basis) and
the following explanatory variables and response variable. The ratio
of zero-catch data is approximately 10%.

Response variable

CPUE (catch in number per 1000 hooks) for yellowfin tuna in
the Indian Ocean caught by Japanese commercial longline vessels.

Explanatory variables

Year (1960–2003), Month (1–12), Area (1–5, Fig. 1), Gear (num-
ber of hooks between float, HBF), SST (sea surface temperature),
MLD (mixed layer depth).

Fig. 1. Area stratification used for CPUE standardization of yellowfin tuna in the
Indian Ocean caught by the Japanese longline commercial fishery.
h 93 (2008) 154–162 157

Remark. Year, Month, Area and SST, MLD are defined as
categorical and continuous variables, respectively. Agreed area
stratification for yellowfin tuna in the IOTC working party on the
tropical tuna is shown in Fig. 1.

At first, after 0.1 was uniformly added as the constant in the
ad hoc method, we selected the final model by BIC (Baysian infor-
mation criterion: Schwarz, 1978) of the candidate models in the
range of null model in Eq. (10) where the main effect of year is only
included, to the full model in Eq. (11) in which all main effects and
two-way interactions are included. Because the main objective of
CPUE analyses is to extract year trend of relative abundance, the
main effect of year is included into the null model.

log(CPUEi + 0.1) = Intercept + Yeari + Errori,

Errori ∼ N(0, �2) (10)

log(CPUEijk + 0.1)

= Intercept + Yeari + Monthj + Areak + GEAR + SST + MLD

+(Year ∗ Month)ij + (Year ∗ Area)ik + (Month ∗ Area)jk

+(Year ∗ SST)i + (Year ∗ MLD)i + (Area ∗ GEAR)k + (Area ∗ SST)k

+(Area ∗ MLD)k + (Month ∗ GEAR)j + (Month ∗ SST)j

+(Month ∗ MLD)j + (SST ∗ MLD) + Errorijk, Errorijk ∼ N(0, �2)

(11)

After estimating the power parameter of variance function
by maximizing the profile log-likelihood in the BIC-best model,
we estimated each parameter of regression coefficients using the
quasi-likelihood framework in the Tweedie distribution model.

2.2. Case study 2: silky shark in the North Pacific Ocean by
Japanese training longline vessels

We carried out CPUE standardization for silky shark in the
North Pacific Ocean utilizing catch and effort data caught by
Japanese training longline vessels. The purpose is to compare
the ad hoc method, the Catch-NB (negative-binomial) model (i.e.,
catch model with negative-binomial error structure), delta-type
two-step method (Delta-lognormal model) and the Tweedie distri-
bution model. We used the data for each operation, the following

explanatory variables and response variable for this analysis. The
ratio of zero-catch is more than 80%.

Response variable

CPUE (catch in number per 1000 hooks) for silky shark in the
North Pacific Ocean caught by Japanese training longline vessels.

Explanatory variable

Year (1992–2003), Quarter (1–4, 1: January–March, 2:
April–June, 3: July–September, 4: October–December), Area (1–4,
1: 0� Lat.<20, 2: 20� Lat.<30, 3: 30� Lat.<40, 2: 40� Lat.<50),
Gear (number of hooks between float, HBF), Year, Quarter, Area and
Gear are set as categorical and continuous variables, respectively.

3. Results

We describe the following results in terms of comparison among
the Tweedie distribution model, ad hoc method, Catch-NB model
and Delta-lognormal model.
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Table 1
Dataset used for 5-fold cross-validation in the example of yellowfin tuna in the
Indian Ocean caught by the Japanese longline commercial fishery

Sub-set No. of data Scenarios

Base case I II III IV V

1 9871 Rule C.V. Rule Rule Rule Rule
2 9872 Rule Rule C.V. Rule Rule Rule
3 9871 Rule Rule Rule C.V. Rule Rule
4 9872 Rule Rule Rule Rule C.V. Rule
5 9871 Rule Rule Rule Rule Rule C.V.

Rule and C.V. show the sub-dataset for rulemaking and cross-validation, respectively.

datasets divided randomly. In Table 1, “Rule” and “C.V.” express
the supervised data used for parameter estimation of both mod-
els and unsupervised ones for cross-validation with concealing the
observed values deliberately.

Table 2 shows the overall values of Pearson’s correlation coef-
ficient and square error between the observed and the predicted
CPUE values. Values of correlation and square error in each case
Fig. 2. Value of log-likelihood function (L) changing the power-parameter (p) of

the Tweedie model for CPUE standardization of yellowfin tuna in the Indian Ocean
caught by the Japanese longline commercial fishery.

- Estimation of power-parameter of variance function in the
Tweedie model.

- Correlation plots of predicted and observed values by 5-fold
cross-validation.

- Residual analyses.
- Extracted CPUE year trends.
- Model comparison by correlation coefficient and square error.

3.1. Case study 1: Yellowfin tuna in the Indian Ocean by Japanese
commercial longline vessels

In this case study, we estimated the unknown regression
parameters of the Tweedie distribution model using the same com-
bination of explanatory factors as the final model in formula (12)
obtained from the ad hoc method.

log(CPUE + 0.1) = Intercept + Year + Month + Area + Gear + SST

+MLD + Area ∗ MLD + Error,

Error ∼ N(0, �2) (Final Model) (12)

In Fig. 2, X axis and Y show the power parameter (p) and the

value of the log-likelihood function. The value of (p) correspond-
ing to the MLE (maximum likelihood estimates) was approximately
estimated at 1.58 in this case. Assuming this value (1.58) of
power parameter (p), other parameters including regression coeffi-
cients were estimated using the framework of the quasi-likelihood
method. We also utilized the same combination of explanatory
variables in the formula (10) in the Tweedie model as the ad hoc
method. Fig. 3 shows the quantile–quantile (QQ) plots based on
the value of deviance and standard residual in the Tweedie model
and the ad hoc method. The residual skewed a little on the left-
hand side because some predicted values obtained from the model
corresponding to the zero-catch observations became positive. The
difference of the year trends of standardized CPUE between based
on the Tweedie model and the ad hoc method, shown in Fig. 4, is not
so large although the CPUE year trend obtained from the Tweedie
model looks like more stable than that by the ad hoc method.

Next, we describe the accuracy comparison of the Tweedie
model and the ad hoc method using 5-fold cross-validation based
on the suggestion by Breiman et al. (1984), where they described
that it is empirically good in general to set the division number
(n) to 5 in the n-fold cross-validation. Table 1 shows the sub-
Fig. 3. Quantile–quantile (QQ) plots of the deviance residuals in the Tweedie model
(a) and standard residuals in the ad hoc method (b) for yellowfin tuna.
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Fig. 4. Year trends of standardized CPUE obtained from the Tweedie distribution
model and ad hoc method for yellowfin tuna in the Indian Ocean.

Table 2
Model comparison based on the results of 5-fold cross-validation for the example
of yellowfin tuna

Candidate model Pearson’s correlation Square error

Tweedie model 0.493920 3,749,210
Ad hoc method 0.468231 4,222,409

(i.e., sub-datasets) with concealing the observed values are shown
in Tables 3 and 4. Both correlation and square error in the Tweedie
model are better than those in the ad hoc method (Tables 3 and 4).
The correlation plots between the observed and the predicted CPUE
values for the whole are illustrated in Fig. 5. Judging from the fig-
ure, the Tweedie model is a little more balanced about the observed
CPUE and corresponding predicted one than the ad hoc method
because it is difficult for the ad hoc method to predict the large
observed CPUE values moderately.

Table 3
Pearson’s correlation coefficient in each sub-dataset by 5-fold cross-validation in
the example of yellowfin tuna

Correlation I II III IV V

Tweedie model 0.532 0.473 0.486 0.509 0.486
Ad hoc method 0.508 0.437 0.458 0.498 0.461

Table 4
Square error in each sub-dataset by 5-fold cross-validation for the example of yel-
lowfin tuna

Square error I II III IV V

Tweedie model 578,187 864,574 798,697 615,102 902,651
Ad hoc method 652,065 972,004 910,298 685,552 1,002,491
Fig. 5. Overall correlation plots of the observed and the predicted CPUE in the
Tweedie model (a) and in the ad hoc method (b) for yellowfin tuna.

3.2. Case study 2: silky shark in the North Pacific Ocean by
Japanese training longline vessels

As a result of the model selection of many candidate models in
the range of null model to full model using BIC, same explanatory
factors were selected in the ad hoc method and Catch-NB model
(formulae (13) and (14)). Therefore, this combination of effects
was also used in the Tweedie distribution and the Delta-lognormal

model (both in the 1st and 2nd step).

Ad hoc method

log(CPUE + 0.01) = Intercept + Year + Area + Quarter + Gear

+Area ∗ Gear + Error, Error ∼ N(0, �2) (13)

Catch-NB model

E[Catch] = Effort × exp(Intercept + Year + Area + Quarter + Gear

+Area ∗ Gear,

Catch ∼ NB(˛, ˇ), (Effort is assumed as the offset) (14)
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Fig. 6. Value of log-likelihood function (L) changing the power-parameter (p) in the
Tweedie model for CPUE standardization of silky shark in the North Pacific Ocean
caught by the Japanese longline training vessels.
Delta-lognormal model

1st step:

E
[

log
{

q

1 − q

}]
= Intercept + Year + Area + Quarter + Gear

+Area ∗ Gear,

q(ratio of zero-catch) ∼ Binomial(�) (15)

2nd step:

log(CPUE) = Intercept + Year + Area + Quarter + Gear + Area

∗Gear + Error, Error ∼ N(0, �2) (16)

In the Delta-lognomal model, formulae (15) and (16) in the 1st
step and 2nd step are applied to the whole data and positive data
(i.e., Catch > 0), respectively.

Specific computational procedures in the case study, the method
for n-fold cross-validation and indices (Pearson’s correlation coef-

Fig. 7. Histogram of standard residual in the Tweedie model for silky shark.
Fig. 8. Year trends of CPUE obtained from the Tweedie model, ad hoc method, delta-
type two-step model and Catch-NB model for silky shark in the North Pacific Ocean.

Table 5
Dataset used for 5-fold cross-validation in the example of silky shark in the North
Pacific Ocean caught by the Japanese longline training fishery

Sub-set No. of data Scenarios

Base case I II III IV V

1 4688 Rule C.V. Rule Rule Rule Rule
2 4687 Rule Rule C.V. Rule Rule Rule
3 4688 Rule Rule Rule C.V. Rule Rule
4 4687 Rule Rule Rule Rule C.V. Rule
5 4688 Rule Rule Rule Rule Rule C.V.

Rule and C.V. show the sub-dataset for rulemaking and cross-validation, respectively.

ficient and square error) for model validation, are similar to those
in the former case study 1 except for adding the Catch-NB distri-
bution and Delta-lognormal model to the candidate models. We
described the parameter estimation of the Tweedie distribution,
correlation plots of the predicted and the observed values by 5-fold
cross-validation, model comparison using Pearson’s coefficient and

square error.

The values of log-likelihood function changing the power
parameter (p) are shown in Fig. 6. The power parameter maxi-
mizing the log-likelihood was estimated about 1.12 and this imply
the distribution pattern of the silky shark resembles the Poisson
distribution. Fig. 7 shows the histogram of the standard deviance
residuals and the fitting to the Normal distribution seems not to be
so good. Fig. 8 shows CPUE year trends by LSMEANS based on Type
III SS of the four candidate models, Tweedie model, ad hoc method,
Delta-lognormal model and Catch-NB model. The year trends of
standardized CPUE in ad hoc method are rather different from that
of other three models.

Next, we describe the accuracy of the comparison of the Tweedie
model, ad hoc method, Delta-lognormal model and Catch-NB
model using 5-fold cross-validation. Table 5 shows the fifth sub-
datasets divided randomly, in which “Rule” and “C.V.” express
the supervised data used for parameter estimation and unsuper-
vised ones for cross-validation with concealing the observed values
deliberately.

Tables 6–8 show the results of 5-fold cross-validation for the
whole and in each sub-datasets, respectively. We carried out the

Table 6
Model comparison based on the results of 5-fold cross-validation for the example
of silky shark

Candidate model Pearson’s correlation Square error

Tweedie model 0.502957 6761.768
Catch-NB model 0.450111 11432.45
Delta-lognormal 0.484131 8065.108
Ad hoc method 0.446779 8814.842
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Fig. 9. Overall correlation plots of observed and predicted CPUE in the Tweedie model (
method (d) for silky shark.

validation based on the Pearson’s correlation coefficient and square
error of the observed and the predicted values. In these tables, the
Tweedie distribution model is the best and the Delta-lognormal
model is the second best of the four candidate models judging
from the value of both correlation coefficient and square error.
In the other two models, the value of square error in the ad hoc
method is smaller than that in the Catch-NB model. On the other
hand, the value of square error in the Catch-NB model is wholly
higher than that in the ad hoc method. Fig. 9 shows the correlation
plots between the observed and the predicted values for the whole
dataset in four models.

Table 7
Pearson’s correlation coefficient in each sub-dataset by 5-fold cross-validation for
the example of silky shark

Correlation I II III IV V

Tweedie model 0.513 0.464 0.558 0.504 0.497
Catch-NB model 0.472 0.431 0.486 0.453 0.427
Delta-lognormal 0.482 0.462 0.515 0.485 0.49
Ad hoc method 0.456 0.422 0.47 0.46 0.443

Table 8
Square error each sub-dataset by 5-fold cross-validation for the example of silky
shark

Square error I II III IV V

Tweedie model 1277 1493 983 1166 1842
Catch-NB model 2035 2465 1911 2259 2762
Delta-lognormal 1527 1785 1268 1491 1994
Ad hoc method 1688 1846 1375 1517 2389
a), in the Catch-NB model (b), in the Delta-lognormal model (c) and in the ad hoc

In the Tweedie model, predicted CPUE values seem to be a little
small compared with the corresponding observed ones as a whole.
The correlation plots are well-balanced rather than other three
models. In Delta-lognormal model and Catch-NB model, the pattern
of the correlation is rather similar and bias of the sign between the
observed and the predicted CPUE is not so large. However, the dif-
ference of the absolute values between the observed and predicted
CPUE is large especially in Catch-NB model. The ad hoc method has
a bias that almost all of CPUE is estimated less than 0.5 regardless

of the magnitude of the observed values. Values of square error
in this method are small compared to the Catch-NB model and it
seemed the cause that the most of the zero-catch data, which are
approximately 85% of the total, is estimated to positive infinitesi-
mal values. Therefore, model performance of ad hoc method seems
to be inferior to that of Catch-NB model.

4. Discussion

As a result of the accuracy evaluation using n-fold cross-
validation, where we used Pearson’s correlation coefficient and
square error between the observed and the predicted CPUE val-
ues, the model performance of the Tweedie model is better than
that of other candidate models in both case studies.

In the former case study 1 in Sections 2.1 and 3.1, the ratio of
zero-catch is about 10% and it is not high as the target tuna species.
As a result of 5-fold cross-validation by correlation coefficient and
square error, accuracy of the Tweedie model is slightly higher than
that of ad hoc method and the difference is not so large. CPUE year
trends of both models are rather similar. These are attributable to
the lower rate of zero-catch. In other words, the superiority of the
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Tweedie model does not appear so clearly if the rate of zero-catch
is low. Judging from these analyses, it seems to be reasonable to
apply the ad hoc method from the practical viewpoint if the ratio
of zero-catch (R) is not so large (e.g., R < 1/3).

On the contrary, if the ratio of zero-catch is rather high in
the latter case (described in Sections 2.2 and 3.2) which is a
common ratio for by-catch species. As a result of n-fold cross-
validation based on the indices of Pearson’s correlation coefficient
and square error, the performance of the Tweedie model is the best
and that of the Delta-lognormal model is the second best. These
models are rather superior to the ad hoc method and Catch-NB
model.

In the comparison of the previously used methods, the ad hoc
method and Catch-NB model, the Pearson’s correlation coefficient
and square error are better in the Catch-NB model and ad hoc
method, respectively. However, the ad hoc method has a large bias
because almost all of the estimated CPUE show less than 0.5 regard-
less of the magnitude of observed CPUE values.

The three candidate models, the Tweedie distribution, Delta-

lognormal and Catch-NB model, show similar year trends of CPUE
and the behavior of the ad hoc method is quite different. In fact,
decreasing year trends were obtained from these three models to
some degree or another although yearly CPUE based on the ad hoc
model was rather stable.

Therefore, in the case that the ratio of zero-catch is high, we sug-
gest to utilize the best Tweedie distribution model; otherwise the
delta-type two-step method such as the Delta-lognormal model for
practical reasons (i.e., the computation using the Tweedie model
is generally more difficult than that through the Delta-lognormal
model although R software is a powerful tool to analyze by the
Tweedie distribution model) because the model performance is
rather good compared to the ad hoc method and Catch-NB model.
On the other hand, it is not so good to use the ad hoc method in
such a case because this method has a large bias both for point
estimation and for interval estimation.
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