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Introduction 

Understanding tuna movement and estimating parameters of tuna movement is coming to 
be recognized as important in assessing the status of tuna stocks and for determining the 
degree of interaction between fisheries that harvest the tuna stocks (Kleiber, 1994). Tuna 
movement parameters and other parameters of tuna population dynamics have been esti
mated from tagging data (Hilborn 1990, Sibert and Fournier 1993, Kleiber and Hampton 
1994). The numerical methods used in these studies all make the assumption that tagged 
fish are independent of each other when in fact it is known that tuna move in schools which 
maintain their integrity on the order of months (Bayliff 1988). Thus tagged tunas released 
in the same school are clearly not independent of each other in the early days following 
release, though they may become more independent as time goes on. 

Kleiber and Hampton (1994) speculate that their estimation model might be indiffer
ent to schooling behavior in terms of the parameter estimates, and that the goodness of 
fit would simply be poorer than would be expected with true independent (non-schooling) 
behavior. In other words, the parameter estimates may be unbiased by the fact that 
schooling occurs in nature but not in the model, even though the minimum value of the 
negative log likelihood is larger than it should be given the statistical structure of the 
model. 

To check on that speculation, I have conducted a modeling experiment in which I 
created synthetic tagging da ta with and without schooling behavior imposed and with 
known parameter values of advection, diffusion, natural mortality and fishing mortality. I 
then used the same model to estimate the original model parameter values from both the 
schooling and non-schooling tag data. 

T a g g e d Fish D y n a m i c s M o d e l 

The basic model without schooling is a diffusion equation for a single, instantaneous release 
at a point in two dimensional space with uniform attrition throughout due to natural and 
fishing mortality and with a constantly increasing spatial offset due to. advection. The 
probability density of capture, P ( z , y , f ) , at point x,y and time t for a single fish released 
at point x0, j/o at time t = 0 is calculated at all grid points of a spatio- temporal grid 
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consisting of 15 time steps and a 51 x 51 spatial array. An exact (analytical) solution for 
the independent case (no schooling) is obtained from the following formula: 

^ • F r- ,.i?., »n*\- t (x - g0 - utf + (y - y0 -vt)2^ . f . p ( x ' y ' f ) ~ ^ 5 7 e x P ( - ( F + M)Oexp( • • jfii ) (1) 

where F and M are the fishing and natural mortalities, u and v are the x and y components 
of advection velocity, and D is the diffusivity. The probability densities are assembled into 
a probablility space "P/(/3) = {pi} which is a function of the parameters 0 = {F, M, u, v, £>}. 
The index i is organized to run in a ordered way through all the points in the spatio-
temporal grid so that p,- = p(xi,yj,r;) for i > 1, and pi is defined by pa = 1 - ]£i>iP«-
This implicitly integrates the probability densities assuming that the the grid spacings 
(Ax, Ay, Ai) axe all equal to 1 which in turn defines the spatial and temporal units of the 
model parameters in terms of the grid spacing. 

I chose the following set of base values for the parameters /?o = {FO,MO,UO,VO,DQ}: 

F0 = .05 t i m e - 1 

M0 = .15 t i m e - 1 

u0 — 2.0 length t i m e - 1 

v0 = 2.0 length t i m e - 1 

DQ = 2.0 area t i m e - 1 

where the spatial and temporal units are the grid spacings. The resulting spatial distribu
tions of probabilities after 1, 7, and 15 time steps are shown in figures 1-3. Figure 4 shows 
the distribution of return probability with time as well as the non-return probability. 

A synthetic non-schooling tag data set with N releases and the base parameter set 
is produced first by randomly choosing JV index values with replacement according to the 
probability space Pi(Po). For this exercise, I set N = 1000. Because the choice of index 
values was made with replacement, a given value could be chosen more than once. The 
synthetic data set ft/(/3o) consists of the number of times that each index value (i.e. each 
of the grid points as well as the non-return case) was chosen. Any number of such synthetic 
data sets can be produced. There will be stochastic variation among them reflecting the 
statistical case of independent (non-schooling) fish. 

The case for schooling fish was handled by randomly choosing a number of spatial grid 
points within a time level and reassigning all the probability within that time level equally 
among the chosen grid points. Grid point choice was made with replacement so that a 
grid point might get more than one share of probability. The chosen grid points represent 
schools. The number of grid points chosen varies linearly from 2 in the first time interval to 
30 in the last time interval, thus mimicking exchange of tagged fish into untagged schools 
and resulting increasing independence with time. Figures 7-9 show one example of the 
chosen grid points at time steps 1, 7, and 15. Probability at unchosen grid points is set 
to zero. The resulting probability space for schooling Vs(Po) has identical index structure 
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to Vi, and the probability distribution with time is the same, but many of the grid points 
have zero probability. "Ps(0o) leads to a synthetic schooling da ta set 7Zs(Po) in the same 
way that Vi(0o) 7£/(A>)- The only difference is that multiple examples of 7£/(/?o) come 
from the same probability distribution whereas multiple examples of 7ls(0o) each involve 
two stochastic processes - one to produce Vs(fio) and the next to produce 7ls(0o)-

F i t t i n g M o d e l t o T a g D a t a 

Estimates of parameters are obtained from a set of tag da ta by minimizing the following 
multinomial negative log likelihood functions with respect to the parameters 0: 

M^(M\Pz(/3)) = £ 7 l r ! - log(JV!) - 2 * W o ) l o g ( W ) ) (2) 

for independent fish, and 

£s(Ks(/3o)\Vx(0))=Y^Ksl-loS(Nl)-Y^Ks(Po)log(Vi(p)) (3) 
i i 

for schooling fish. Note that the independent probability space V% appears in both cases 
because the idea is to check how well a model, based on independence, functions as a 
parameter estimator when the fish are in fact schooling. 

R e s u l t s 

Figure S shows the distributions of parameter estimates from 30 independent data sets 
(solid lines) and 30 schooling data sets (dashed lines). The precision of the estimates is 
less for schooling fish than independent fish, but there is little indication of bias from these 
30 examples. 

Figure 9 shows scatter plots of all pairs of parameter estimates for the independent 
case and the schooling case. In either case, the only appreciable correlation evident from 
the 30 examples is between natural mortality and fishing mortality. 

Figure 10 shows the distributions of 200 negative log likelihoods calculated from inde
pendent fish OCj(ft j(#)) |PiG0o)), the solid line) and schooling fish (£s{Ks(Po)\Pi(Po)), 
the dashed line). Cs tends to be larger than Cj. 

C o n c l u s i o n 

As Kleiber and Hampton (1994) speculated, when tag da ta from schooling fish are analyzed 
with a non-schooling model, the objective function (Negative log likelihood) tends to be 
larger (indicating poorer fit) than would be the case if the fish didn't school, but the 
minimum value of the objective function tends to occur at the correct parameter values. 
Thus the parameter estimates appear to be unbiased, but the goodness of fit of the model 
appears to be poorer than would be expected for non-schooling fish. 
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