

Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change

Majuro Atoll Republic of the Marshall Islands

Assessment Report No. 2 July-August 2013

Brad Moore¹, Jesse Capelle², Emma Kabua², Aaranteiti Kiareti¹, Lyla Lemari², Robinson Liu¹, Melba White² ¹Coastal Fisheries Program, Secretariat of the Pacific Community ² Marshall Islands Marine Resources Authority

Funding for this project was provided by the Australian Government

The views expressed herein are those of the authors and do not reflect the official opinion of the Australian Government

© Copyright Secretariat of the Pacific Community 2014

All rights for commercial / for profit reproduction or translation, in any form, reserved. SPC authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided SPC and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Original SPC artwork may not be altered or separately published without permission.

ACKNOWLEDGEMENTS

The Secretariat of the Pacific Community (SPC) acknowledges with gratitude the funding support provided by the Australia's International Climate Change Adaptation Initiative (ICCAI) for the implementation of the 'Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change' project in Majuro Atoll, Republic of the Marshall Islands (RMI).

SPC also gratefully acknowledges the collaborative support from the Marshall Islands Marine Resource Authority (MIMRA). In particular, we are especially thankful to Glen Joseph (Director) and Florence Edwards (Chief, Coastal Fisheries) who showed interest in the importance of this project and provided the needed support in moving the project forward. In addition, we are greatly indebted to our boat skipper, Elji Lenak, for his tireless efforts in the field. Kyne Krusic-Golub and Simon Robertson, from Fish Ageing Services (<u>http://www.fishageingservices.com/</u>), assisted with the development of ageing protocols, otolith processing onto slides, and estimation of fish ages. Mr Ian Bertram (SPC Coastal Fisheries Programme) provided constructive comments on a draft version of the report.

ACRONYMS

AusAIDAusaralian Agency for International DevelopmentCMICollege of Marshall IslandsCOTSCrown-of-thorns starfishCPCCoral Point CountCPUECatch-per-unit-effortD-UVCDistance-sampling underwater visual censusEEZExclusive Economic Zoneggram(s)GDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeRDInstitut de Recherche pour le Développementmmetre(s)MIRANMarshall Islands Conservation SocietyMIIMRAMarshall Islands Marine Resource AuthorityMPAMarshall Islands Marine Resource AuthorityMPANational Aeronautics and Space AdministrationNGONon-government organisationPCCSPPacific Climate Change Science ProgramPCCSPPacific Climate Change Science ProgramPCCSPSatadard deviationSDSatadard deviationSDSatadard deviationPCCSPSating Climate Change Science ProgramPCCSating Climate Change Science ProgramPCCSating Climate Change Science Program <t< th=""><th>ANOVA</th><th>Analysis of Variance</th></t<>	ANOVA	Analysis of Variance
CMICollege of Marshall IslandsCOTSCrown-of-thorns starfishCPCCoral Point CountCPUECatch-per-unit-effortD-UVCDistance-sampling underwater visual censusEEZExclusive Economic Zoneggram(s)GDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MIRAMMarshall Islands Conservation SocietyMIRAMarshall Islands Conservation SocietyMIRAMarshall Islands Conservation SocietyMIRAMarshall Islands Conservation SocietyMIRANon-government organisationPCCSPPacific Climate Change Science ProgramPCCSPPacific Climate Change Science ProgramPCCSPPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtRepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsSDStandard deviationSCUBASel-contained underwater breathing apparatusSDStandard deviationSCUBASel-cortained of the Pacific CommunitySCUBASel-cortained of the Pacific CommunitySCUBASel-cortained of the Pacific Community<	AusAID	•
CPCCoral Point CountCPUECatch-per-unit-effortD-UVCDistance-sampling underwater visual censusEEZExclusive Economic Zoneggram(s)GDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtRepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsRMIEPASandard deviationSCUBASel-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific Community <td>CMI</td> <td></td>	CMI	
CPUECatch-per-unit-effortD-UVCDistance-sampling underwater visual censusEEZExclusive Economic Zoneggram(s)GDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPRCFPacific Climate Change Science ProgramPRCTRepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsSDStandard deviationSCUBASel-centaied underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEStandard error	COTS	Crown-of-thorns starfish
D-UVCDistace-sampling underwater visual censusEEZExclusive Economic Zoneggram(s)GDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsRMIEPASendard deviationSDStandard deviationSPACCSecretariat of the Pacific CommunitySCUBASel Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	CPC	Coral Point Count
EEZExclusive Economic Zoneggram(s)GDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCInternational Climate Change Adaptation Initiative (Australia)IPCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPacific Climate Change Science ProgramPICTPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsSDStandard deviationSDACAAplied Geoscience and Technology Division of SPCSPCASecretariat of the Pacific CommunitySEscandard errorSTSandard errorSTSandard errorSTSandard errorSTSandard errorSTSandard errorSTSandard errorS	CPUE	Catch-per-unit-effort
ggram(s)GDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGCPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPASeadurd endrewater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSceretariat of the Pacific CommunitySESandard errorSTSandard errorSTSandard encorSTSandard encorSTSandard encorSTSandard encorSTSandard encor <td< td=""><td>D-UVC</td><td>Distance-sampling underwater visual census</td></td<>	D-UVC	Distance-sampling underwater visual census
CDDPGross Domestic ProductGDPGross Domestic ProductGPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIRAMarshall Islands Marine Resource AuthorityMIPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtRepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsRMIEPASea Level Fine Resolution Acoustic Measuring EquipmentSOPACStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACSpleid Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	EEZ	Exclusive Economic Zone
GPSGlobal Positioning SystemGRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCSPPacific Climate Change Science ProgramPROCFishReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPASelf-contained underwater breating apparatusSCUBASelf-contained underwater breating apparatusSDSandard deviationSCUBASelf-contained underwater Development ProgrammetSPCSecterariat of the Pacific CommunitySEAFRAMESel Level Fine Resolution Accoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecterariat of the Pacific CommunitySESea-surface temperatureSTSudard devitorSTStandard errorSTStandard errorSTSea-surface temperatureSTSea-surface temperatureSTSea-surfac	g	gram(s)
GRGovernment RevenuehahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPASel Level Fine Resolution Acoustic Measuring EquipmentSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSceretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	GDP	Gross Domestic Product
hahectareICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCAPracific Climate Change Science ProgramPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtRef-benthos transectRMIRepublic of the Marshall IslandsSCUBASel Level Fine Resolution Acoustic Measuring EquipmentSCUBASel Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySESandard errorSTSea-surface temperatureTLTotal length	GPS	Global Positioning System
ICCAIInternational Climate Change Adaptation Initiative (Australia)IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPASeal-contained underwater breathing apparatusSDStandard deviationSCUBASeal-cevel Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	GR	Government Revenue
IPCCIntergovernmental Panel on Climate ChangeIRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPASeal-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	ha	hectare
IRDInstitut de Recherche pour le Développementmmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall IslandsSDStandard deviationSCUBASel Level Fine Resolution Acoustic Measuring EquipmentSDPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	ICCAI	International Climate Change Adaptation Initiative (Australia)
mmetre(s)mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	IPCC	Intergovernmental Panel on Climate Change
mmmillimetre(s)MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMINRAMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsSCUBAself-contained underwater breathing apparatusSDStandard deviationSCPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	IRD	Institut de Recherche pour le Développement
MCRMPMillennium Coral Reef Mapping ProjectMICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsSCUBASelf-contained underwater breathing apparatusSDStandard deviationSCPACSea Level Fine Resolution Acoustic Measuring EquipmentSPACSecretariat of the Pacific CommunitySESeaSTCSea-surface temperatureSTSea-surface temperatureTLTotal length	m	metre(s)
MICSMarshall Islands Conservation SocietyMIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPASelf-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSPACScretariat of the Pacific CommunitySFsandard errorSSTSea-surface temperatureTLTotal length	mm	millimetre(s)
MIMRAMarshall Islands Marine Resource AuthorityMPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsSCUBASelf-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSPACSecretariat of the Pacific CommunitySPACSearetariat of the Pacific CommunitySFstandard errorSSTSea-surface temperatureTLTotal length	MCRMP	Millennium Coral Reef Mapping Project
MPAMarine Protected Areannumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsSCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCScurata of the Pacific CommunitySEFSea-surface temperatureTLTotal length	MICS	Marshall Islands Conservation Society
nnumber (sample size)NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPCTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtRege-benthos transectRMIRepublic of the Marshall IslandsSCUBASelf-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCStandard errorSSTSea-surface temperatureTLTotal length	MIMRA	Marshall Islands Marine Resource Authority
NASANational Aeronautics and Space AdministrationNGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCScaretariat of the Pacific CommunitySEStandard errorSSTSea-surface temperatureTLTotal length	MPA	Marine Protected Area
NGONon-government organisationPCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSPCSceretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	n	number (sample size)
PCAPrinciple Component AnalysisPCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCScretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	NASA	National Aeronautics and Space Administration
PCCSPPacific Climate Change Science ProgramPICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	NGO	Non-government organisation
PICTPacific Island Countries and TerritoriesPROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	PCA	Principle Component Analysis
PROCFishPacific Regional Oceanic and Coastal Fisheries Development ProgrammeRBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSEstandard errorSSTSea-surface temperatureTLTotal length	PCCSP	Pacific Climate Change Science Program
RBtReef-benthos transectRMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	PICT	Pacific Island Countries and Territories
RMIRepublic of the Marshall IslandsRMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	PROCFish	Pacific Regional Oceanic and Coastal Fisheries Development Programme
RMIEPARepublic of the Marshall Islands Environmental Protection AuthoritySCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	RBt	Reef-benthos transect
SCUBAself-contained underwater breathing apparatusSDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	RMI	Republic of the Marshall Islands
SDStandard deviationSEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	RMIEPA	Republic of the Marshall Islands Environmental Protection Authority
SEAFRAMESea Level Fine Resolution Acoustic Measuring EquipmentSOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	SCUBA	self-contained underwater breathing apparatus
SOPACApplied Geoscience and Technology Division of SPCSPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	SD	Standard deviation
SPCSecretariat of the Pacific CommunitySEstandard errorSSTSea-surface temperatureTLTotal length	SEAFRAME	Sea Level Fine Resolution Acoustic Measuring Equipment
SEstandard errorSSTSea-surface temperatureTLTotal length	SOPAC	Applied Geoscience and Technology Division of SPC
SSTSea-surface temperatureTLTotal length	SPC	Secretariat of the Pacific Community
TL Total length	SE	standard error
		•
USD United States dollar(s)		-
	USD	United States dollar(s)

TABLE OF CONTENTS

LIST	OF TABLES	5
LIST	OF FIGURES	6
EXE	CUTIVE SUMMARY	9
1.	Introduction	.13
Proje	ct Background	13
The A	Approach	.13
Repu	blic of the Marshall Islands	16
	Background	16
	Fisheries	16
	Climate Change Projections for RMI	18
	Projected Effects of Climate Change of Coastal Fisheries of RMI	20
2.	Implementation of the Project in the Republic of the Marshall Islands	21
Site S	election	21
Fishe	ries of Majuro Atoll	21
Habit	at Definition and Selection	.22
A Co	mparative Approach Only	.22
3.	Monitoring of Water Temperature	.23
Meth	odologies	23
Resul	ts	.24
4.	Finfish Assessments	.26
Meth	odologies	26
	Data collection	26
	Data processing and analysis	28
Site r	esults	30
	Drenmeo MPA	30
	Laura 1	35
	Laura 2	40
	Majuro	45
	Woja MPA	50
5.	Benthic Habitat Assessment	55
Meth	odologies	55
	Broad-scale assessments	55
	Fine-scale assessments	55
Resul	ts	58
	Broad-scale assessments	58
	Fine-scale assessments	.59
6.	Invertebrate Surveys	.72
Meth	ods and Materials	.72
	Data collection	.72
	Data analysis	.73
Resul	ts	.74
	Manta tow	74

	Reef-benthos transects	76
7.	Creel Surveys	79
Meth	ods	79
	Data analysis	79
Resul	ts	80
	Bottom fishing	80
	Spearfishing	82
	Length frequencies	83
	Fisher Perceptions	
8.	Biological Monitoring of Selected Reef Fish Species	85
Meth	ods	
	Sample collection	85
	Sample processing	85
	Data analysis	86
Resul	ts	86
9.	Discussion and Recommendations for Improving the Resilience of Coastal Fisheries o	f
	Majuro Atoll	90
Reco	nmendations for Future Monitoring	92
10.	References	94

APPENDICES:

Appendix 1	Finfish distance-sampling underwater visual census (D-UVC) survey form
Appendix 2	Form used to assess habitats supporting finfish
Appendix 3	Invertebrate survey form
Appendix 4	GPS positions of manta tow surveys conducted at the Ajeltake, Laura and Majuro
	monitoring sites 100
Appendix 5	GPS positions of reef-benthos transects established at Majuro Atoll 103
Appendix 6	Form used for creel surveys at Majuro Atoll104
Appendix 7	Number of individuals observed from various methods during creel surveys,
	August 2013 and relative percent contribution to overall catch by method 109

LIST OF TABLES

Table 1	Summary of activities and variables measured during the monitoring program in Majuro Atoll, Republic of the Marshall Islands, 2013
Table 2	Annual fisheries and aquaculture harvest in the Republic of the Marshall Islands, 2007 (Gillet 2009)
Table 3	Estimated catch and value of coastal fisheries sectors in RMI, 2007 (Bell et al. 2011) 17
Table 4	Projected air temperature increases (in °C) for a) northern and b) southern Republic of
	the Marshall Islands under various IPCC emission scenarios (from PCCSP 2011) 18
Table 5	Projected sea-surface temperature increases (in °C) for a) northern and b) southern
	Republic of the Marshall Islands under various IPCC emission scenarios (from PCCSP 2011)
Table 6	Projected changes in coastal fish habitat in the RMI under various IPCC emission
	scenarios (from Bell et al. 2011)
Table 7	Projected changes to coastal fisheries production in the RMI under various IPCC
	emission scenarios (from Bell et al. 2011)
Table 8	Details of sea surface temperature loggers deployed at Majuro Atoll
Table 9	Details of finfish monitoring transects within the Drenmeo MPA monitoring site 30
Table 10	Total number of families, genera and species, and diversity of finfish observed at
	back, lagoon and outer reef habitats of the Drenmeo MPA monitoring site, 2011 and 2013
Table 11	Details of finfish monitoring transects within the Laura 1 monitoring site
Table 12	Total number of families, genera and species, and diversity of finfish observed at reef flat, back, lagoon and outer reef habitats of the Laura 1 monitoring site, 2011 & 2013
Table 13	Details of finfish monitoring transects within the Laura 2 monitoring site
Table 14	Total number of families, genera and species, and diversity of finfish observed at back, lagoon and outer reef habitats of the Laura 2 monitoring site, 2011 and 201340
Table 15	Details of finfish monitoring transects within the Majuro monitoring site
Table 16	Total number of families, genera and species, and diversity of finfish observed at
	back, lagoon and outer reef habitats of the Majuro monitoring site, 2011 and 201345
Table 17	Details of finfish monitoring transects within the Woja MPA monitoring site
Table 18	Total number of families, genera and species, and diversity of finfish observed at back
T 11 10	and outer reef habitats of the Laura 2 and Woja MPA monitoring sites, 2013
Table 19	Details of benthic habitat monitoring transects within the Drenmeo MPA monitoring
T 11 00	site
Table 20	Details of benthic habitat monitoring transects within the Laura 1 monitoring site 62
Table 21	Details of benthic habitat monitoring transects within the Laura 2 monitoring site 64
Table 22	Details of benthic habitat monitoring transects within the Majuro monitoring site 66
Table 23	Details of benthic habitat monitoring transects within the Woja MPA monitoring site 69
Table 24	Species analysed in manta tow assessments (where present)

Table 25	Total number of genera and species, and diversity of invertebrates observed during		
	reef-benthos transects at the Drenmeo MPA, Majuro, Laura and Woja MPA		
	monitoring sites, 2011 and 201376		
Table 26	Data summary of creel surveys conducted at Majuro Atoll, 2013		
Table 27	Demographic parameter estimates for selected reef fish species from Majuro Atoll,		
	Marshall Islands, July-August 2013. VBGF parameters are based on constrained		
	(<i>t</i> ₀ =0) estimates		
Table 28	Estimates of mortality for monitored species (where $n > 40$ individuals aged) using		
	catch curve and Hoenig (1983) estimators. Maximum ages used in the equation of		
	Hoenig (1983) and age ranges used for total mortality (Z) calculations are indicated.		
	Red faces indicate where estimated fishing mortality exceeds optimal fishing mortality		
	of 0.5M, green faces indicate F < 0.5M		

LIST OF FIGURES

Figure 1	Republic of the Marshall Islands (from PCCSP 2011)
Figure 2	Mean annual air temperature at Majuro (1956–2009) (from PCCSP 2011) 18
Figure 3	Majuro Atoll
Figure 4	Concrete housings for the temperature logger being readied for deployment at Majuro
	Atoll, 2011
Figure 5	Location of water temperature loggers deployed in Majuro Atoll
Figure 6	Mean sea surface temperate (SST) recorded at Majuro Atoll, 2 nd June 2011 to 29 th July
	2013
Figure 7	Location of finfish and fine-scale benthic habitat monitoring sites at Majuro Atoll 26
Figure 8	Diagram portraying the D-UVC method
Figure 9	Location of finfish and fine-scale benthic habitat monitoring transects within the
	Drenmeo MPA monitoring site. Black arrows (not to scale) indicate the approximate
	direction of transects
Figure 10	Mean total density of finfish (\pm SE) among survey years and habitats at the Drenmeo
	MPA monitoring site
Figure 11	Mean density (\pm SE) of common finfish families among a) back reef, b) lagoon reef
	and c) outer reef habitats of the Drenmeo MPA monitoring site during the 2011 and
	2013 surveys
Figure 12	Mean densities $(\pm SE)$ of key functional groups among a) back reef, b) lagoon reef and
	c) outer reef habitats of the Drenmeo MPA monitoring site during the 2011 and 2013
	surveys
Figure 13	Location of finfish and fine-scale benthic habitat monitoring transects within the Laura
	1 monitoring site. Black arrows (not to scale) indicate the approximate direction of
	transects
Figure 14	Mean total density of finfish (\pm SE) among survey years and habitats at the Laura 1
	monitoring site
Figure 15	Mean densities (± SE) of common finfish families among a) reef flat, b) back reef, c)
	lagoon reef and d) outer reef habitats of the Laura 1 monitoring site during the 2011
	and 2013 surveys

Figure 16	Mean densities $(\pm SE)$ of key functional groups among a) reef flat, b) back reef, c) lagoon reef and d) outer reef habitats of the Laura 1 monitoring site during the 2011
	and 2013 surveys
Figure 17	Location of finfish and fine-scale benthic habitat monitoring transects within the Laura
	2 monitoring site. Black arrows (not to scale) indicate the approximate direction of
	transects
Figure 18	Mean total density of finfish (± SE) among survey years and habitats at the Laura 2 monitoring site
Figure 19	Mean densities (± SE) of common finfish families among a) back reef, b) lagoon reef and c) outer reef habitats of the Laura 2 monitoring site during the 2011 and 2013 surveys
Figure 20	Mean densities $(\pm SE)$ of key functional groups among a) back reef, b) lagoon reef and c) outer reef habitats of the Laura 2 monitoring site during the 2011 and 2013 surveys. 44
Figure 21	Location of finfish and fine-scale benthic habitat monitoring transects within the
C	Majuro monitoring site. Black arrows (not to scale) indicate the approximate direction of transects
Figure 22	Mean total density of finfish (± SE) among survey years and habitats at the Majuro monitoring site
Figure 23	Mean densities (\pm SE) of common finfish families among a) back reef, b) lagoon reef
	and c) outer reef habitats of the Majuro monitoring site during the 2011 and 2013 surveys
Figure 24	Mean densities (\pm SE) of key functional groups among a) back reef, b) lagoon reef and
	c) outer reef habitats of the Majuro monitoring site during the 2011 and 2013 surveys.49
Figure 25	Location of finfish and fine-scale benthic habitat monitoring transects within the Woja
-	MPA monitoring site. Black arrows (not to scale) indicate the approximate direction of transects
Figure 26	
Figure 27	Mean densities (±SE) of common finfish families among a) back reef and b) outer reef habitats of the Laura 2 and Woja MPA monitoring sites during the 2013 survey 53
Figure 28	Mean densities $(\pm SE)$ of key functional groups among a) back reef and b) outer reef habitats of the Laura 2 and Woja MPA monitoring sites during the 2013 survey 54
Figure 29	Location of broad-scale (manta tow) benthic habitat monitoring regions at Majuro Atoll. Each point represents a single 300 m replicate within each station
Figure 30	Lyla Lemari of the Marshall Islands Marine Resources Authority conducting a
Figure 31	photoquadrat survey on the outer reef of the Laura 2 monitoring site
	manta tow
Figure 32	Percent cover of major benthic categories at a) back reef, b) lagoon reef and c) outer reef transects of the Drenmeo MPA monitoring site among 2011 and 2013 surveys60
Figure 33	Lagoon reef transects of the Drenmeo MPA were characterised by a high cover of <i>Porites cylindrica</i> and <i>Porites-rus</i>

Figure 34	Benthic habitats of the outer reefs of the Drenmeo MPA was characterised by a high
	percent cover of macroalgae, in particular Halimeda spp
Figure 35	Percent cover of major benthic categories at a) reef flat, b) back reef, c) lagoon reef
	and d) outer reef transects of the Laura 1 monitoring site among 2011 and 2013
	surveys
Figure 36	Percent cover of major benthic categories at a) back reef, b) lagoon reef and c) outer
-	reef transects of the Laura 2 monitoring site among 2011 and 2013 surveys
Figure 37	Percent cover of major benthic categories at a) back reef, b) lagoon reef and c) outer
C	reef transects of the Majuro monitoring site among 2011 and 2013 surveys
Figure 38	Lagoon reef habitats of the Majuro monitoring site had a high cover of live coral, in
8	particular <i>Porites-rus</i>
Figure 39	Outer reef habitats of the Majuro monitoring site had a high cover of live coral (in
1 1801 0 0 >	particular <i>Acropora</i> spp.), <i>Halimeda</i> spp. and crustose coralline algae
Figure 40	Percent cover of major benthic categories at a) back reef and b) outer reef transects of
I iguite to	the Laura 2 and Woja MPA sites, 2013
Figure 41	Benthic habitats of the Woja MPA were characterized by relatively high cover of
1 15010 +1	macroalgae and live hard coral, in particular <i>Halimeda</i> spp. and <i>Acropora</i> spp71
Figure 42	A stand of <i>Porites-rus</i> within the back-reef of the Woja MPA
Figure 43	Diagrammatic representation of the two invertebrate survey methods used at Majuro
rigure 45	Atoll during the 2011 and 2013 surveys: manta tow (left) and reef benthos transects
Eiguro 11	(right)
Figure 44	Location of reef-benthos transect (RBt) monitoring stations at Majuro Atoll
Figure 45	Overall mean density of invertebrate species (\pm SE) observed during manta tows at a)
Element 10	Ajeltake (top), Laura (middle) and Majuro stations, 2007, 2011 and 201375
Figure 46	Overall mean density of invertebrate species (\pm SE) observed during reef-benthos
F: 47	transects at Drenmeo MPA (top) and Majuro monitoring stations, 2011 and 2013 77
Figure 47	Overall mean density of invertebrate species (\pm SE) observed during reef-benthos
	transects at Laura stations, 2011 and 2013 (top), and Laura and Woja MPA stations,
F ' 10	2013
Figure 48	Melba White of the Marshall Islands Marine Resources Authority interviewing a
	handline fisher
Figure 49	Lyla Lemari of the Marshall Islands Marine Resources Authority weighing individuals
	during a bottom fishing survey
Figure 50	Percent contribution by a) total number and b) total weight of families caught by
	bottom fishing, Majuro Atoll, August 2013
Figure 51	Percent contribution by a) total number and b) total weight of families caught by
	spearfishing, Majuro Atoll, August 2013
Figure 52	Responses of lead fishers to questions on perceptions on whether catch quantities (left)
	or fish sizes (right) have changed over the last five years
Figure 53	Length frequency of most commonly observed finfish species during creel surveys at
	Majuro Atoll, 2013.Dashed lines indicate estimated lengths at 50% maturity from: c)
	Taylor et al. (2014); d) Rhodes et al. (2011); i) SPC unpublished data
Figure 54	Age frequency distributions (left) and von Bertalanffy growth function curves (right)
	for the four monitored finfish species at Majuro Atoll, July-August 2013

EXECUTIVE SUMMARY

Introduction

Considering the concerns of climate change and its impacts on coastal fisheries resources, the Secretariat of the Pacific Community (SPC) is implementing the 'Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change' project with funding assistance from the Australian Government's International Climate Change Adaptation Initiative (ICCAI). This project aims to assist Pacific Island Countries and Territories (PICTs) to determine whether changes are occurring in the productivity of coastal fisheries and, if changes are found, to identify the extent to which such changes are due to climate change, as opposed to other causative factors. This report presents the results of first re-survey for the project conducted in Majuro Atoll, Republic of the Marshall Islands (RMI), in July and August, 2013. Results are compared against those from the baseline survey of Majuro Atoll conducted in 2011.

Survey Design

Survey work at Majuro Atoll covered six disciplines, including monitoring of water temperature, assessments of finfish and invertebrate resources and benthic habitats, creel surveys and biological monitoring of key reef fishes, and was conducted by staff from SPC's Coastal Fisheries Science and Management Section and the Marshall Islands Marine Resource Authority (MIMRA). The fieldwork included capacity development of local counterparts by providing training in survey design and methodologies, data collection and entry, and data analysis.

Benthic Habitat Assessments

Benthic habitats of Majuro Atoll were surveyed using two complementary approaches: a broadscale method, using manta tows, and a fine-scale method, using a photoquadrat analysis. Manta tows were conducted at three sites: Ajeltake, Laura and Majuro. A slight increase in live coral was evident at the Majuro site, while a coral algae regime shift was evident from 2011 to 2013 at the Laura and Ajeltake sites, with the cover of algae exceeding that of live coral.

Fine-scale assessments of benthic habitats were conducted at five sites, including three regions open to fishing (Laura 1, Laura 2 and Majuro sites), and two areas closed to fishing (Drenmeo MPA and Woja MPA). Between 6 and 12 fifty metre transects were established at each site, with transects covering back, lagoon and outer reef habitats. Approximately 50 photographs of the benthos were taken per transect (with one photo taken approximately every metre) using a housed underwater camera and a quadrat frame measuring an area of 0.25 m². Photographs were analysed using SPC point-count software. In contrast to the broadscale results, few differences were observed in benthic habitat composition at the study sites.

Finfish Surveys

Finfish resources and their supporting habitats of Majuro Atoll were surveyed using distancesampling underwater visual census (D-UVC) methodology, conducted at the same sites as the benthic habitat assessments. The following key observations were made:

- Finfish diversity was found to be consistently higher in 2013 compared to 2011 for most stations and habitats. It is unclear whether these changes are a result of different surveyor skill or experience levels or whether they represent 'real' changes in finfish populations.
- In terms of density, few statistically significant differences were evident among the 2011 and 2013 surveys at each site. Differences that were observed showed little consistency among groups, sites or habitats. Accordingly, it is likely that these differences represent natural variations in finfish density, rather than being indicative of long-terms trends. Further monitoring at the established sites is warranted to accurately define long-term trends in finfish density.
- Few differences were observed in both density and biomass of fish within protected areas relative to comparably-situated areas open to fishing. This finding suggests that under their current design the MPAs are ineffective in protecting fish populations and should be redesigned. That the MPAs were found to have a significant positive effect on the density of several invertebrate species (see below) suggests that while they may be effective in prohibiting fishing and protecting site-attached species within their boundaries, they are likely too small to protect more mobile organisms such as fishes.

Invertebrate Surveys

Invertebrate resources and their supporting habitats of Majuro Atoll were surveyed using two complementary approaches: a broad-scale method, using manta tows, and a fine-scale method, using reef-benthos transects (RBt).

Manta tow assessments were conducted along the Laura, Majuro and Ajeltake regions of Majuro Atoll. In general, densities of invertebrates observed during manta tows were low during all surveys, with only *H. atra* observed in densities greater than 150 individuals/ha. The following differences were observed amongst surveys:

- Densities of the sea cucumber *Thelenota anax* at the Majuro site appeared significantly lower in the 2013 survey than in 2011;
- Densities of the giant clam *Tridacna maxima* at the Laura site appeared significantly lower in 2013 relative to the PROCFish surveys of the region in 2007;
- Densities of the giant clam *Tridacna squamosa* at the Laura site appeared significantly lower in both 2011 and 2013 relative to the PROCFish surveys in 2007.

Reef-benthos transects (RBt) were used to assess invertebrate resources at finer-spatial scales. Eighteen RBt monitoring stations (6 x 40 m replicates) were established around Majuro Atoll, with 6 stations in each of the Laura and Majuro sites, and three stations in each of the Drenmeo MPA and Woja MPA sites.

Invertebrate diversity at RBt stations was higher in 2013 than 2011 for all monitoring sites. In terms of mean densities, the following differences were observed amongst surveys:

• Densities of the sea cucumber *Bohadschia argus* at the Drenmeo MPA site appeared significantly lower in the 2013 survey than in 2011;

- Densities of the sea cucumber *Holothuria atra* were significantly higher within the Woja MPA site than all other sites;
- Densities of the gastropod genus *Turbo* were significantly higher within the Woja MPA site than stations completed within the Laura site in both 2011 and 2013.

Futher monitoring is warranted to assess changes in invertebrate populations over time.

Creel surveys

Five surveys where bottom fishing was the main fishing activity were completed. On average, bottom fishing trips involved 3.4 fishers and lasted on average 6.8 hours. The average catch per trip was 29.18 kg, or 51.2 individual fish. Catch-per-unit effort 2.24 fish/fisher/hour, or 1.27 kg/fisher/hour. Bottom fishing took place mainly in the main pass near Irooj Islet, around the back and patch reefs near Rongrong Islet and along the back reefs of Woja. The catch was dominated by the families Serranidae, Lethrinidae and Lutjanidae. A total of 247 individual fishes representing 20 species were observed in the handline catch, the most common of which were *Epinephelus polyphekadion* (representing 51% of total catch by number and 47% of the total catch by weight), *Epinephelus maculatus* (9% of total catch by number and 5% of the total catch by weight) and *Lethrinus erythropterus* (6% of the total catch by both number and weight).

Eight surveys where spearfishing was the main fishing activity were completed. On average, spearfishing trips involved 5.1 fishers, with a mean duration of 5.1 hours. On average, spearfishing trips involved 5.1 fishers and lasted a mean duration of 4.4 hours. The average catch was 55.86 kg, or 186.1 individual fish per trip. Catch-per-unit effort was 8.73 fish/fisher/hour, or 2.59 kg/fisher/hour. As with handlining, fishing was mainly conducted around the main pass near Irooj Islet, the back and patch reefs of the north-west of the atoll near Rongrong Islet and along the back reefs of Woja and Ajeltake. A total of 1498 individual fishes from 62 species and 14 families were observed in the spearfishing catch, with members of the Acanthuridae, Siganidae, Holocentridae and Serranidae dominating the total catch by both abundance and weight. The most common finfish species caught were *Siganus argenteus* (representing 24% of total catch by abundance and 17% by weight), *Acanthurus lineatus* (18% of total catch by abundance and 11% by weight), *Naso lituratus* (7% of the total catch by both abundance and weight) and *Myripristis berndti* (5% of total catch by abundance and 3% by weight).

During the creel surveys perception data were collected from lead fishers. The majority of fishers surveyed indicated that they had seen changes in the fishery in the last few years, with 67% of all respondents stating they considered their catches had decreased compared to five years ago, and 83% of all respondents stating the sizes of fish had decrease compared to five years ago.

Biological monitoring of key reef species

Biological monitoring of key reef fish species at Majuro Atoll was included for the first time during the 2013 survey, and focused on two commercially harvested species: humpback red snapper (*Lutjanus gibbus*) and orangespine unicornfish (*Naso lituratus*) and two 'control' species: redfin butterflyfish (*Chaetodon lunulatus*) and striated surgeonfish (*Ctenochaetus striatus*). Demographic

parameters, including von Bertalanffy growth function parameters and total, natural and fishing mortality rates were determined for each species to provide a baseline for Majuro Atoll. Fishing mortality of the two commercially harvested species was slightly below the recommended maximum rate of fishing mortality (F_{opt}) indicating that these species are fished near their optimum levels.

Management recommendations for improving the resilience of coastal fisheries of Majuro Atoll

Monitoring potential effects of chronic disturbances such as climate change is a challenging prospect that requires the generation of an extensive time series of data and regional cooperation and comparison amongst standardised datasets and indicators. Nevertheless, several key management recommendations, outlined below, are prescribed from the current study that will help improve the resilience of the coastal fisheries of Majuro Atoll to both long-term (e.g. climate change) and short-term (e.g. overfishing) stressors:.

- 1. Expand the network of locally managed Marine Protected Areas;
- 2. Place restrictions on destructive or highly efficient fishing practices, in particular night-time spearfishing;
- 3. Assess and monitor grouper catches;
- 4. Protect sharks and other ecologically-significant species;
- 5. Maintain the national closure of sea cucumber fisheries;
- 6. Develop and implement coastal fisheries management plan / regulations;
- 7. Dissemination of relevant scientific knowledge to key stakeholders and the general public.

1. Introduction

Project Background

Considering the concerns of climate change and its impacts on coastal fisheries resources, the Secretariat of the Pacific Community (SPC) is implementing the 'Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change' project with funding assistance from the Australian Government's International Climate Change Adaptation Initiative (ICCAI). This project aims to assist Pacific Islands Countries and Territories (PICTs) to determine whether changes are occurring in the productivity of coastal fisheries and, if changes are found, to identify the extent to which such changes could be due to climate change, as opposed to other causative factors.

The purpose of this project is to assist PICTs to:

- 1. Recognise the need for monitoring the productivity of their coastal fisheries and commit to allocating the resources to implement monitoring measures.
- 2. Design and field-test the monitoring systems and tools needed to:
 - i. Determine whether changes to the productivity of coastal fisheries are occurring, and identify the extent to which such changes could be due to climate change, as opposed to other pressures on these resources, particularly overfishing and habitat degradation from poor management of catchments;
 - ii. Identify the pace at which changes due to climate change are occurring to 'ground truth' projections; and
 - iii. Assess the effects of adaptive management to maintain the productivity and increase resilience of coastal fisheries to external stressors.

The Approach

Monitoring impacts of climate change on coastal fisheries is a complex challenge. To facilitate this task, a set of monitoring methods was selected from the SPC expert workshop 'Vulnerability and Adaptation of Coastal Fisheries to Climate Change: Monitoring Indicators and Survey Design for Implementation in the Pacific' (Noumea, 19th–22nd April 2010) of scientists and representatives of many PICTs. These methods include monitoring of water temperature using temperature loggers, finfish and invertebrate resources, benthic habitats, catch and fishing patterns and biological monitoring of key reef finfish species (Table 1). In parallel, SPC is currently implementing database backend and software to facilitate data entry, analysis and sharing between national stakeholders and the scientific community as well as providing long-term storage of monitoring data.

Five pilot sites were selected for monitoring: Federated States of Micronesia (Pohnpei), Kiribati (Abemama Atoll), Marshall Islands (Majuro Atoll), Papua New Guinea (Manus Province) and Tuvalu (Funafuti Atoll). Their selection was based on existing available data such as fish, invertebrate and socio-economic data from the Pacific Regional Oceanic and Coastal Fisheries

Development Programme (PROCFish), multi-temporal images (aerial photographs and satellite images) from the Applied Geosciences and Technology Division of SPC (SOPAC), presence of Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME), requests from countries, as well as their geographical location.

This report presents the results of the second round of field surveys for the project conducted in Majuro Atoll, Republic of the Marshall Islands (RMI), in July-August 2013, by a team from SPC's Coastal Fisheries Science and Management Section and staff from Marshall Islands Marine Resource Authority (MIMRA). Collected data are compared agints those of the baseline survey at Majuro conducted in 2011 (Moore et al. 2012). Recommendations for management and future monitoring events are also provided.

Task	Description	Variables measured
Monitoring of water temperate	Fine-scale monitoring of local water temperature within and outside lagoon	Water temperature (°C)
Benthic habitat assessments	Photoquadrat transects across outer, back, flat and lagoon reef habitats at selected sites	Percentage cover of benthic organisms and substrate types (with emphasis on hard corals and algae)
Finfish surveys	Distance-sampling underwater visual census surveys of finfish communities across outer, back, flat and lagoon reef habitats at selected sites	Counts and sizes of most non-cryptic fish species, habitat indices (topography, complexity, substrate type, cover of coral and algae), other incidental observations (e.g. coral bleaching and die-off)
Invertebrate surveys	Broad-scale (manta tow) and fine-scale (reef benthos transect) assessments of invertebrate communities	Counts of observed invertebrate species, habitat indices (relief, complexity, cover of coral and algae), other incidental observations (e.g. coral bleaching and die-off)
Creel surveys	Assessment of fishing activities and catch	Fisher demographics, catch composition, length and weight of individuals caught, fishing methods, catch-per-unit effort, fisher's perceptions
Biological sampling of finfish	Examination of key population characteristics of focal reef fish species	Age and growth relationships, mortality rates (where sample sizes permit)

Table 1	Summary of activities and variables measured during the monitoring program in
	Majuro Atoll, Republic of the Marshall Islands, 2013.

Republic of the Marshall Islands

Background

The Republic of the Marshall Islands is located in the western North Pacific Ocean between 4°N and 12°N, stretching from 160°E to 173°E (Figure 1). The country consists of 29 atolls and five low-lying, solitary coral islands. It is bounded on the west by the Federated States of Micronesia, on the south by Nauru and Kiribati, and on the north by the United States territory of Wake Island (Figure 1). The total land area of the RMI is approximately 181 km², while the Exclusive Economic Zone (EEZ) totals approximately 2.13 million km² (Gillet 2009). In 2011, the estimated population of the RMI was 68,000, with approximately two-thirds of the population living on the capital, Majuro Atoll (Marshall Islands 2011). During the 1999 census over half the population was under the age of 15 years, the highest ratio in the Pacific (Canadian High Commission 2001). The climate is warm and humid, with mean air temperatures ranging from 24.7 to 29.9°C, humidity ranging from 78–83% and an annual rainfall of approximately 4,034 mm. The wet season is from May to November (Sisifa 2002, Turner 2008).

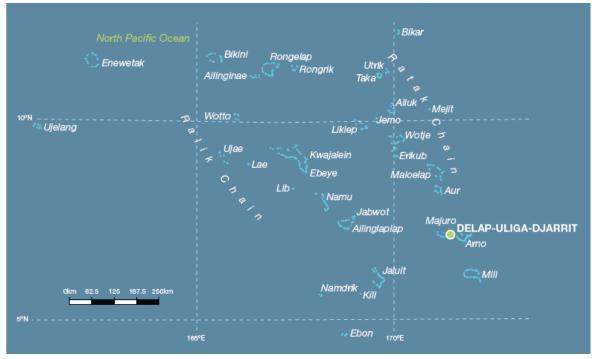


Figure 1 Republic of the Marshall Islands (from PCCSP 2011).

Fisheries

National Oceanic Fisheries

The RMI has an industrial purse-seine tuna fishery that operates within its EEZ. Recent average catches (2004–2008) by this fishery have exceeded 47,000 tonnes, worth USD 56.7 million per year (Bell et al. 2011). In 2007, this fishery contributed approximately 20% to the gross domestic product (GDP) of the RMI. The RMI also licenses foreign fishing vessels to fish for tuna and associated species within its EEZ. Between 1999 and 2008, foreign purse-seine vessels made an average annual catch of approximately 22,500 tonnes, worth USD 20 million per year (Bell et al. 2011). Licence fees for access to the fishery make up a significant portion of government revenue

(GR). In 2007, licence fees from foreign and national vessels contributed 2% of GR, while fees from longline vessels contributed a further 1.2% of GR (Gillet 2009).

National Coastal Fisheries

The coastal fisheries of the RMI are comprised of four broad-scale categories: demersal fish (bottom-dwelling fish associated with mangrove, seagrass and coral reef habitats), nearshore pelagic fish (including tuna, wahoo, mackerel, rainbow runner and mahi-mahi), invertebrates targeted for export, and invertebrates gleaned from intertidal and subtidal areas (Bell et al. 2011). In 2007, the total annual catch of the coastal sector was estimated to be 3,750 tonnes, worth > USD 7.2 million (Gillet 2009) (Table 2). The commercial component of this catch was an estimated 950 tonnes, while the subsistence catch was 2,800 tonnes (Gillet 2009) (Table 2). Approximately 64% of the total catch is estimated to be made up of demersal fish (Bell et al. 2011) (Table 3).

Harvest sector	Quantity (tonnes)	Value (USD million)
Offshore locally-based	63,569	81,210,390
Offshore foreign-based	12,727	19,572,712
Coastal commercial	950	2,900,000
Coastal subsistence	2,800	4,312,000
Freshwater	0	0
Aquaculture	25,000 pieces	130,000
Total	80,046 t plus 25,000 pieces	108,125,102

Table 2Annual fisheries and aquaculture harvest in the RMI, 2007 (Gillet 2009).

Marshallese harvest, market and consume a wide range of coastal finfish and invertebrates. Nationally, fresh fish consumption averages well in excess of the regional average of 35 kg per person per year (Pinca et al. 2009). Coastal fish species are harvested by a variety of methods, including netting, handlining, trolling and spearfishing. Between 1991 and 2002, seven rural fish bases, equipped with cold-storage and ice-making facilities, were established on outer atolls so that fresh fish from rural areas could be transported to Majuro for marketing (Chapman 2004a). All of these bases focus mainly on harvesting reef and lagoon-associated species. MIMRA continues to provide the transport vessels to collect fish from the rural fish bases, with fish either landed in Majuro or Ebeye for marketing (Chapman 2004b).

Table 3Estimated catch and value of coastal fisheries sectors in RMI, 2007 (Bell et al.
2011).

Coastal fishery category	Quantity (tonnes)	Contribution of catch (%)	
Demersal finfish	2,417	64	
Nearshore pelagic finfish	1,080	29	
Targeted invertebrates	3	< 1	
Inter/subtidal invertebrates	250	7	
Total	3,750	100	

Climate Change Projections for RMI

Air temperature

Historical air temperature data records for the RMI are available for Majuro and Kwajalein Atolls. For Majuro Atoll, these records show an increase in average daily temperatures of approximately 0.15° C per decade since recording began in 1956 (Figure 2) (PCCSP 2011). Mean air temperatures are projected to continue to rise, with increases of +0.6, +0.8 and +0.7°C (relative to 1990 values) projected for 2030, under the IPCC B1 (low), A1B (medium) and A2 (high) emissions scenarios, respectively, for the northern RMI and +0.7, +0.8 and +0.7°C (relative to 1990 values) projected for 2030, under the IPCC B1, A1B and A2 emissions scenarios, respectively, for the southern RMI (PCCSP 2011) (Table 4).

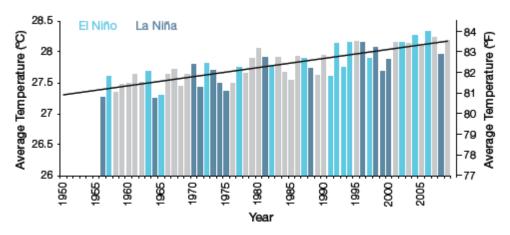


Figure 2 Mean annual air temperature at Majuro (1956–2009) (from PCCSP 2011).

Table 4	Projected air temperature increases (in °C) for a) northern and b) southern Republic
	of the Marshall Islands under various IPCC emission scenarios (from PCCSP 2011)

Region	Emission scenario	2030	2030 2055	
a) northern RMI	B1	$+0.6\pm0.4$	$+1.0\pm0.5$	$+1.5\pm0.7$
	A1B	$+0.8\pm0.4$	$+1.5\pm0.6$	$+2.3\pm0.9$
	A2	$+0.7\pm0.3$	$+1.4\pm0.4$	$+2.8\pm0.7$
b) southern RMI B1		$+0.7\pm0.4$	$+1.1\pm0.6$	$+1.6\pm0.8$
	A1B	$+0.8\pm0.5$	$+1.5\pm0.7$	$+2.4\pm0.9$
	A2		$+1.4\pm0.4$	$+2.8\pm0.7$

Sea-surface temperature

In accordance with mean air surface temperatures, sea-surface temperatures are projected to further increase, with increases of +0.7, +0.8 and $+0.7^{\circ}$ C (relative to 1990 values) projected for 2030, under the IPCC B1 (low), A1B (medium) and A2 (high) emissions scenarios, respectively, for the northern RMI and +0.3, +0.4 and $+0.4^{\circ}$ C (relative to 1990 values) projected for 2030, under the IPCC B1, A1B and A2 emissions scenarios, respectively, for the southern RMI (PCCSP 2011) (Table 5).

PCCSP 2011).				
Region	Emission scenario	2030	2055	2090
a) northern RMI	B1	$+0.7\pm0.5$	$+1.1\pm0.7$	$+1.5\pm0.9$
	A1B	+0.8 + 0.6	$+1.4\pm0.7$	$+2.3\pm1.0$
	A2	$+0.7\pm0.4$	$+1.4\pm0.6$	$+2.7\pm0.7$
b) southern RMI	B1	$+0.3\pm0.3$	$+0.6\pm0.3$	$+0.8\pm0.4$
	A1B	$+0.4\pm0.3$	$+0.8\pm0.3$	$+1.2\pm0.5$
	A2	$+0.4 \pm 0.2$	$+0.7 \pm 0.3$	$+1.4 \pm 0.4$

Table 5Projected sea-surface temperature increases (in °C) for a) northern and b) southern
Republic of the Marshall Islands under various IPCC emission scenarios (from
PCCSP 2011).

Sea level rise

As part of the AusAID-sponsored South Pacific Sea Level and Climate Monitoring Project ('Pacific Project') a SEAFRAME (Sea Level Fine Resolution Acoustic Measuring Equipment) gauge was installed at Majuro Atoll in May 1993. According to the 2010 Pacific country report on sea level and climate (<u>http://www.bom.gov.au/pacificsealevel/picreports.shtml</u>), the gauge had been returning high resolution, good quality scientific data since installation and as of 2010 the net trend in sea-level rise at Majuro Atoll (accounting for barometric pressure and tidal gauge movement) was calculated at +3.8 mm per year. Based on empirical modeling, mean sea-level is projected to continue to rise during the 21st century, with increases of up to +20 to +30 cm projected for 2035 and +90 to +140 cm projected for 2100 (Bell et al. 2011). Sea level rise may potentially create severe problems for low lying coastal areas, namely through increases in coastal erosion and saltwater intrusion (Mimura 1999). Such processes may result in increased fishing pressure on coastal habitats, as traditional garden crops fail, further exacerbating the effects of climate change on coastal fisheries.

Ocean acidification

Based on the large-scale distribution of coral reefs across the Pacific and seawater chemistry, Guinotte et al. (2003) suggested that aragonite saturation states above 4.0 were optimal for coral growth and for the development of healthy reef ecosystems, with values from 3.5 to 4.0 adequate for coral growth, and values between 3.0 and 3.5 were marginal. There is strong evidence to suggest that when aragonite saturation levels drop below 3.0 reef organisms cannot precipitate the calcium carbonate that they need to build their skeletons or shells (Langdon and Atkinson 2005).

In the RMI region, the aragonite saturation state has declined from about 4.5 in the late 18th century to an observed value of about 3.9 ± 0.1 by 2000 (PCCSP 2011). Ocean acidification is projected to increase, and thus aragonite saturation states are projected to decrease during the 21st century (PCCSP 2011). Climate models suggest that by 2035 the annual maximum aragonite saturation state for RMI will reach values below 3.5 (the lowest saturation level considered adequate for coral growth (Guinotte et al. 2003)) and continue to decline thereafter (PCCSP 2011). These projections suggest that coral reefs of the RMI will be vulnerable to actual dissolution as they will have trouble producing the calcium carbonate needed to build their skeletons. This will impact the ability of coral reefs to have net growth rates that exceed natural bioerosion rates.

Increasing acidity and decreasing levels of aragonite saturation are also expected to have negative impacts on ocean life apart from corals; including calcifying invertebrates, non-calcifying invertebrates and fish. High levels of CO_2 in the water are expected to negatively impact the lifecycles of fish and large invertebrates through habitat loss and impacts on reproduction, settlement, sensory systems and respiratory effectiveness (Kurihara 2008, Munday et al. 2009a, Munday et al. 2009b). The impact of acidification change on the health of reef ecosystems is likely to be compounded by other stressors including coral bleaching, storm damage and fishing pressure (PCCSP 2011).

Projected Effects of Climate Change of Coastal Fisheries of RMI

Climate change is expected to add to the existing local threats to the coral reef, mangrove and seagrass habitats of the RMI, resulting in declines in the quality and area of all habitats (Table 6). Accordingly, all coastal fisheries categories in the RMI are projected to show progressive declines in productivity due to both the direct (e.g. increased SST) and indirect effects (e.g. changes to fish habitats) of climate change (Table 7) (Bell et al. 2011).

Table 6	Projected changes in coastal fish habitat in the RMI under various IPCC emission
	scenarios (from Bell et al. 2011).

Habitat	Projected change (%)			
Habitat	B1/A2 2035	B1 2100*	A2 2100	
Coral cover ^a	-25 to -65	-50 to -75	> -90	
Mangrove area	-10	-50	-60	
Seagrass area	< -5 to -10	-5 to -25	-10 to -30	

* Approximates A2 in 2050; a = assumes there is strong management of coral reefs.

Table 7	Projected changes to coastal fisheries production in the RMI under various IPCC
	emission scenarios (from Bell et al. 2011).

Coastal fisheries category	Projected change (%)				
Coastal lisheries category	B1/A2 2035	B1 2100*	A2 2100		
Demersal fish	-2 to -5	-20	-20 to -50		
Nearshore pelagic fish ^a	0	-10	-15 to -20		
Targeted invertebrates	-2 to -5	-10	-20		
Inter/subtidal invertebrates	0	-5	-10		

* Approximates A2 in 2050; a = tuna contribute to the nearshore pelagic fishery.

2. Implementation of the Project in the Republic of the Marshall Islands

Site Selection

Majuro Atoll was selected as a pilot site for the 'Monitoring the Vulnerability and Adaptation of Coastal Fisheries to Climate Change' project within the RMI following consultations with MIMRA. Majuro Atoll was selected as it offered a number of advantages as a study site, most notably:

- Marshall Islands mentions Strengthen the relevant institutions and improve procedural mechanisms so as to be able to secure the optimal support from both international and regional efforts, in minimising the adverse impact of climate change as one of its goals in the RMI/SPC Joint Country Strategy 2008–2010;
- Majuro Atoll contains a number of marine protected areas (MPAs) (such as the Woja MPA and the Drenmeo MPA), which allow for decoupling of the effects of over-fishing against other factors (i.e. climate change);
- A SEAFRAME gauge was installed at Majuro Atoll in 1993 as part of the South Pacific Sea Level and Climate Monitoring project for purposes of recording sea level rise, air temperature, water temperature, wind speed and direction and atmospheric pressure;
- A wave buoy has been deployed in May 2010 to monitor wave height, time between waves and sea surface temperature near Majuro (College of Marshall Islands);
- Fish, invertebrate and socio-economic data were collected by SPC during the PROCFish/C project at Laura, on the western side of Majuro Atoll, in 2007 (Pinca et al. 2009); and
- Non-governmental organization (NGOs) and MIMRA offices are located on Majuro, which simplifies logistics.

Majuro Atoll is located at approximately 7° N latitude and 171° E longitude, and is comprised of 64 islands (Figure 3). Majuro Atoll consists of approximately 9.7 km² of land area and encloses a lagoon of approximately 295 km². Being an urbanized atoll, Majuro's reefs are impacted by various anthropogenic stressors including poor waste management systems and increased coastal development causing increased sedimentation and coastal erosion (Pinca et al. 2002).

Fisheries of Majuro Atoll

Fishing is an important activity for the people of Majuro Atoll. Socio-economic survey work conducted at Laura as part of the PROCFish surveys by SPC in 2007 revealed that 96% of households surveyed engage in some form of fishing activity (Pinca et al. 2009). Per capita consumption of fresh fish was found to be almost 90 kg per person per year, more than double the regional average of approximately 35 kg per person per year (Pinca et al. 2009). Consumption of invertebrates (edible meat weight only) was approximately 5 kg per person per year (Pinca et al. 2009). Fishers typically use a variety of fishing methods, and target a number of habitats, per fishing trip (Pinca et al 2009). Most frequently, a combination of gillnets, cast nets, handlines and

spears are used. Fishing is mainly a male domain, as males are either exclusive finfish fishers or combine both finfish fishing and invertebrate collection (Pinca et al 2009).

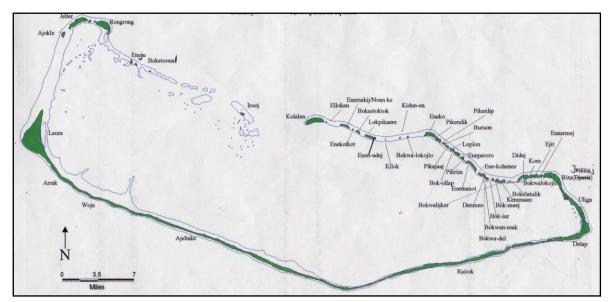


Figure 3 Majuro Atoll.

Habitat Definition and Selection

Coral reefs are highly complex and diverse ecosystems. The NASA Millennium Coral Reef Mapping Project (MCRMP) has identified and classified coral reefs of the world in about 1000 categories. These very detailed categories can be used directly to try to explain the status of living resources or be lumped into more general categories to fit a study's particular needs. For the purposes of the baseline field surveys in Majuro Atoll, four general reef types were categorised:

- 1) lagoon-reef: patch reef or finger of reef stemming from main reef body that is inside a lagoon or pseudo-lagoon;
- 2) reef flat: top of barrier reef between the reef crest and back-reef slope;
- 3) back-reef: inner/lagoon side of outer reef/main reef body; and
- 4) outer-reef: ocean-side of fringing or barrier reefs.

A Comparative Approach Only

The collected data form part of a time-series to examine temporal changes in coastal habitat and fishery resources. It should be stressed that due to the comparative design of the project, the methodologies used, and the number of sites and habitats examined, the data provided in this report should only be used in a comparative manner to explore differences in coastal fisheries productivity over time. In general, these data should not be considered as indicative of the actual available fisheries resources.

3. Monitoring of Water Temperature

Methodologies

To monitor sea surface temperatures at a local scale, two RBR TR1060 temperature loggers were deployed in May 2011 on the western side of Majuro Atoll, with one established inside the lagoon and one on the outer reef. The loggers were calibrated to an accuracy of ±0.002°C and programmed to record temperature every five minutes. Loggers were housed in a PVC tube with holes to allow flow of water and encased in a concrete block (Figure 4). These blocks were then secured to the sea floor using rebars. Due to obvious battery life flaws in the RBR TR1060 loggers, a third logger (Sea-Bird SBE 56) was installed in the lagoon in August 2012, using the same housing system (Table 8). This logger was retrieved, and a second Sea-Bird SBE 56 was deployed, in July 2013.

Figure 4 Concrete housings for the temperature logger being readied for deployment at Majuro Atoll, 2011.

Details	Majuro 1	Majuro 2	Majuro 3	
Deployment date	17/05/2011	17/05/2011	27/8/2012	
Logger type	RBR TR1060	RBR TR1060	Seabird SBE 56	
Location	Laura, Majuro Atoll	Laura, Majuro Atoll	Laura, Majuro Atoll	
Habitat	Lagoon	Outer	Lagoon	
Longitude	171.054299E	171.045127E	171.045127E	
Latitude	7.192523N	7.198610N	7.198610N	
Depth	10 m	19 m	10 m	
Status	Removed	Removed Active		

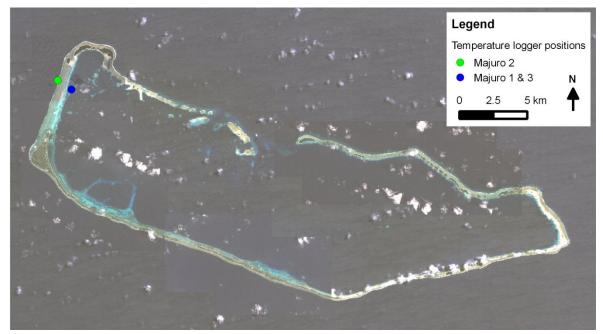
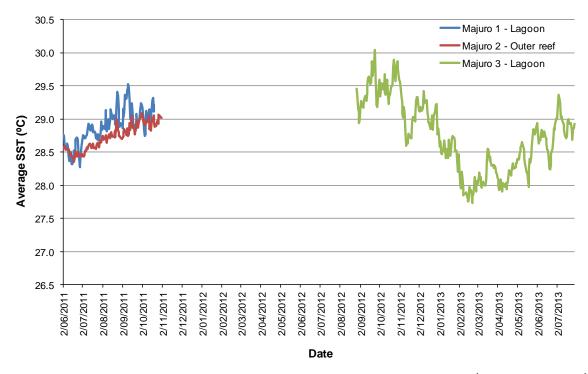



Figure 5 Location of water temperature loggers deployed in Majuro Atoll.

Results

Both RBR TR1060 loggers collected temperature data for approximately 4 months before failing (Figure 6). These loggers have subsequently been removed.

The Seabird SBE 56 collected water temperature data within the lagoon continuously from its deployment in August 2012 to its retrieval in July 2013. A maximum average daily water temperature of 30.04°C was observed in August 2012, while a minimum average daily temperature of 27.73°C was observed in February 2013 (Figure 6). The maximum recorded temperature was 30.31°C, reached in September 2012, while the minimum recorded temperature was 27.40°C, reached in February 2012. This logger will be continuously retrieved and re-deployed to maintain water temperature monitoring within the atoll.

Figure 6 Mean sea surface temperate (SST) recorded at Majuro Atoll, 2nd June 2011 to 29th July 2013.

4. Finfish Assessments

Methodologies Data collection

Fish on reef habitats were surveyed using distance-sampling underwater visual census (D-UVC) methodology. Finfish assessments were conducted at five sites around Majuro Atoll: Drenmeo MPA, Laura 1, Laura 2, Majuro and Woja MPA (Figure 7). Within each site, finfish assessments typically focused on up to four habitats (reef flat, back reef, lagoon reefs and outer reefs) (where present), with up to three replicate 50 m transects surveyed in each habitat at each of the five sites. Individual transects were situated parallel to the reef crest and were directed towards the next consecutive transects. Each transect was completed by two SCUBA divers who recorded the species name, abundance and total length (TL) of all fish observed (Appendix 2). The distance of the fish from the transect line was also recorded (Figure 8). Two distance measurements were recorded for a school of fish belonging to the same species and size (D1 and D2; Figure 8), while for individual fish only one distance was recorded (D1). Effort was made to ensure that the survey took place under the same tidal state and moon phase as the baseline survey. Regular review of identification books and cross-checks between divers after the dive ensured that accurate and consistent data were collected. Following collection, all data were reviewed. Data considered unreliable were removed from the dataset prior to analysis.

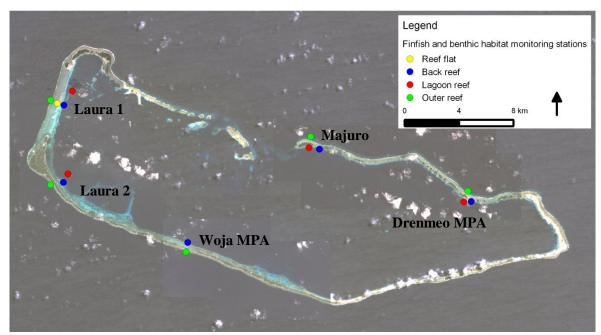
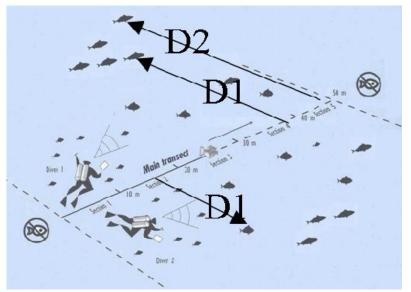



Figure 7 Location of finfish and fine-scale benthic habitat monitoring sites at Majuro Atoll.

Figure 8 Diagram portraying the D-UVC method.

Habitats supporting finfish

Habitats supporting finfish were documented after the finfish survey using a modified version of the medium scale approach of Clua et al (2006). This component uses a separate form (Appendix 3) from that of the finfish assessment, consisting of information on depth, habitat complexity, oceanic influence and an array of substrate parameters (percentage coverage of certain substrate type) within five 10 x 10 m quadrats (one for each 10 m of transect) on each side of the 50 m transect.

The substrate types were grouped into the following six categories:

- Soft substrate (% cover) sum of substrate components *silt* (sediment particles < 0.1 mainly on covering other substrate types like coral and algae), *mud*, and *sand* and *gravel* (0.1 mm < hard particles < 30 mm);
- 2. Hard substrate (% cover) sum of hard substrate categories including *hard coral status* and *hard abiotic*;
- 3. Abiotic (% cover) sum of substrate components *rocky substratum* (slab) (flat rock with no relief), *silt, mud, sand, rubbles* (carbonated structures of heterogeneous sizes, broken and removed from their original locations), *gravels and small boulders* (< 30 cm), *large boulders* (< 1m) and *rocks* (> 1m);
- 4. Hard corals status (% cover) sum of substrate components *live coral*, *bleaching coral* (dead white corals) and *long dead algae covered coral* (dead carbonated edifices that are still in place and retain a general coral shape covered in algae);
- 5. Hard coral growth form (% cover) sum of substrate component live coral consisting of *encrusting coral, massive coral, sub-massive coral, digitate coral, branching coral, foliose coral* and *tabulate coral*;
- 6. Others % cover of *soft coral*, *sponge*, *plants and algae*, *silt covering coral* and *cyanophycae* (blue-green algae). The *plants and algae* category is divided into *macroalgae*, *turf algae*, *calcareous algae*, *encrusting algae* (crustose coralline algae) and *seagrass* components.

Data processing and analysis

Finfish surveys

In this report, the status of finfish resources has been characterised using the following parameters:

- 1) richness the number of families, genera and species counted in D-UVC transects;
- 2) diversity mean number of species observed per transect (\pm SE);
- 3) mean density (fish/m²) and mean biomass (g/m²)– estimated from fish abundance in D-UVC, calculated at a total, functional group, family and individual species level.

Assignment of functional groups

For analysis by functional group, each species identified during the D-UVC surveys was classified into one of eight broad functional groups, adapted from Bellwood et al 2004; Pratchett 2005; Green and Bellwood 2009:

- 1) Macro-carnivores (feed predominantly on mobile benthic organisms and fish) (e.g. some members of the Lethrinidae, Lutjanidae, Serranidae);
- Micro-carnivores (feed predominantly on small benthic organisms and ecto-parasites) (e.g. some members of the Labridae);
- 3) Corallivores (feed predominantly on coral polyps) (e.g. Chaetodontidae);
- Planktivores (feed predominantly on macro- and micro-zooplankton, including both diurnal and nocturnal species) (e.g. some members of the families Acanthuridae, Apogonidae, Chaetodontidae, Holocentridae, Pomacentridae and Serranidae);
- 5) Scrapers/excavators (roving herbivores that feed on turf algae, and remove reef substratum as they feed. Members of this group play a key role in coral reef resilience by limiting the establishment of macroalgae, intensely grazing turf algae and providing areas of clean substratum for coral recruitment) (e.g. members of the Scaridae);
- 6) Grazer/detritivores (roving herbivores that feed on turf algae, but do not scrape or excavate the reef substrate as they feed) (e.g. some members of the families Acanthuridae, all Siganidae except *Siganus canaliculatus*);
- 7) Browsers (roving herbivore that tends to bite or 'crop' algae leaving the basal portions and substrate intact. Browsers play a important role in reef resilience by reducing coral overgrowth and shading by macroalgae, and can play a key role in reversing coral-algal regime shifts) (e.g. some members of the Acanthuridae, *Siganus canaliculatus*); and
- 8) Territorial / farming herbivores (feed predominantly on algae within small territories. Considered to have a negative influence on coral recruitment by allowing algae to grow and out-compete coral recruits for space) (e.g. some members of the Pomacentridae).

Summary graphs of mean density and mean biomass (\pm SE) for each site were generated to further explore patterns in total mean density and mean density of the 18 indicator families and eight functional groups by habitat and survey year. To further explore patterns among surveys, total, family-specific and functional group-specific density data for each individual transect were ln(x+1) transformed to reduce heterogeneity of variances and analysed by a two-way analysis of variance (ANOVA), with survey year (2011 and 2013) and site as fixed factors in the analysis. Tukey-Kramer post-hoc pairwise tests were used to identify specific differences between factors at P =0.05. Where transformed data failed Cochran's test for homogeneity of variances (P < 0.05), an increased level of significance of P = 0.025 was used. Biomass data were not compared amongst surveys as the 2011 size estimation data was considered unreliable for biomass calculations. Rather, biomass data from the 2013 surveys were compared amongst sites within habitats using one-way ANOVA. This design allowed for a comparison of each site over time (for density data), and an assessment of the performance of the individual protected areas vs. comparably-situated sites that are open to fishing (i.e. Drenmeo MPA vs. Majuro 'open' sites, Woja MPA vs. Laura 2 'open' sites) (for both density and biomass data). Due to obvious differences in surrounding land use, oceanic influence and tidal flushing among both open to fishing sites and MPA sites, no attempt was made to pool individual sites into broader groups (e.g. 'open' vs. 'closed') in the analyses.

Site results

Drenmeo MPA

Finfish assessments within the Drenmeo MPA in both 2011 and 2013 covered three habitats, with three 50 m transects completed in each habitat (Table 9; Figure 9).

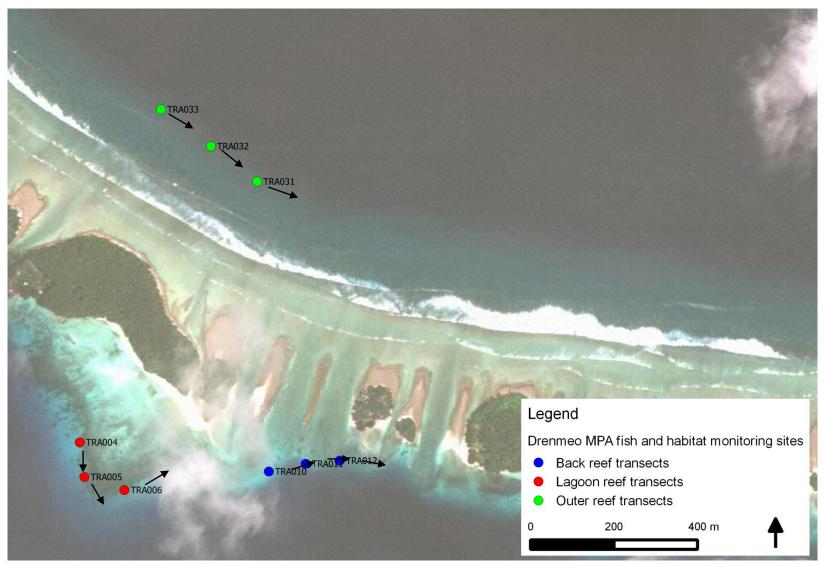

Habitat and transect	Latitude (N)	Latitude (N) Longitude (E)	
Back reef			
T10	7.120633	171.320583	2011, 2013
T11	7.120800	171.321383	2011, 2013
T12	7.120867	171.322117	2011, 2013
Lagoon reef			
T4	7.121267	171.316483	2011, 2013
T5	7.120517	171.316583	2011, 2013
T6	7.120233	171.317450	2011, 2013
Outer reef			
T31	7.126917	171.320333	2011, 2013
T32	7.127683	171.319333	2011, 2013
T33	7.128483	171.318250	2011, 2013

Table 9Details of finfish monitoring transects within the Drenmeo MPA monitoring site.

Finfish diversity within the Drenmeo MPA was considerably higher during the 2013 survey relative to 2011 for all three habitats examined (Table 10). In terms of functional groups, browsers were absent from back reef transects, and corallivores were absent from outer reef transects in 2011. In 2013 all habitats showed high functional group diversity, with all functional groups represented (Table 10).

Table 10Total number of families, genera and species, and diversity of finfish observed at
back, lagoon and outer reef habitats of the Drenmeo MPA monitoring site, 2011 and
2013.

Parameter	Back-reef		Lagoon-reef		Outer-reef	
rarameter	2011	2013	2011	2013	2011	2013
No. of families	12	20	14	17	10	19
No. of genera	25	45	35	53	28	47
No. of species	40	85	62	116	50	89
Diversity	21±5	46±14	33±8	64±7	27±6	51±5
Functional groups	7/8	8/8	8/8	8/8	7/8	8/8

Figure 9 Location of finfish and fine-scale benthic habitat monitoring transects within the Drenmeo MPA monitoring site. Black arrows (not to scale) indicate the approximate direction of transects.

No significant differences in mean total density were observed among surveys for any habitat within the Drenmeo MPA monitoring site (Figure 10). Similarly, no significant differences were observed in densities of the 18 selected families or eight functional groups among sites and surveys for any of the three habitats at P = 0.05 (Figure 11). While mean densities of Labridae and the functional group micro-carnivores on the outer reef appeared lower in 2013 relative to 2011 (Figure 10), these differences were not statistically significant.

When compared against the Majuro site (open to fishing), no significant differences were observed in mean total density or biomass or the density and biomass of the selected indicator families or key functional group at any habitat (data not presented for purposes of brevity).

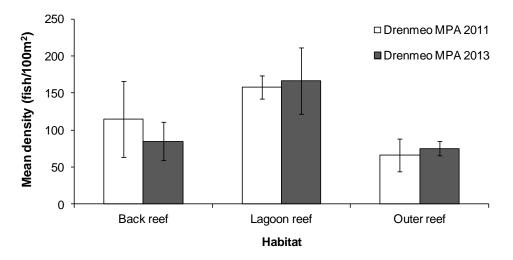


Figure 10Mean total density of finfish (± SE) among survey years and habitats at the DrenmeoMPA monitoring site.

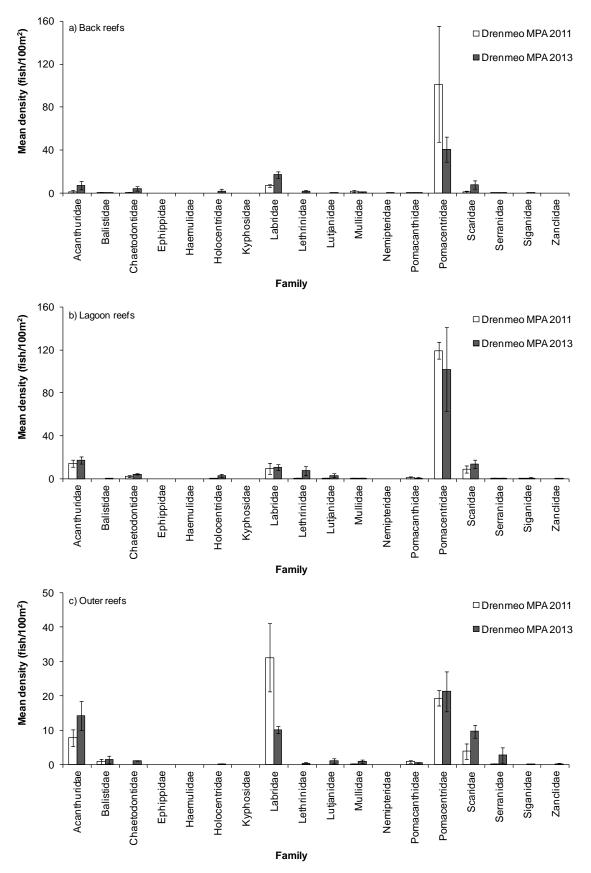
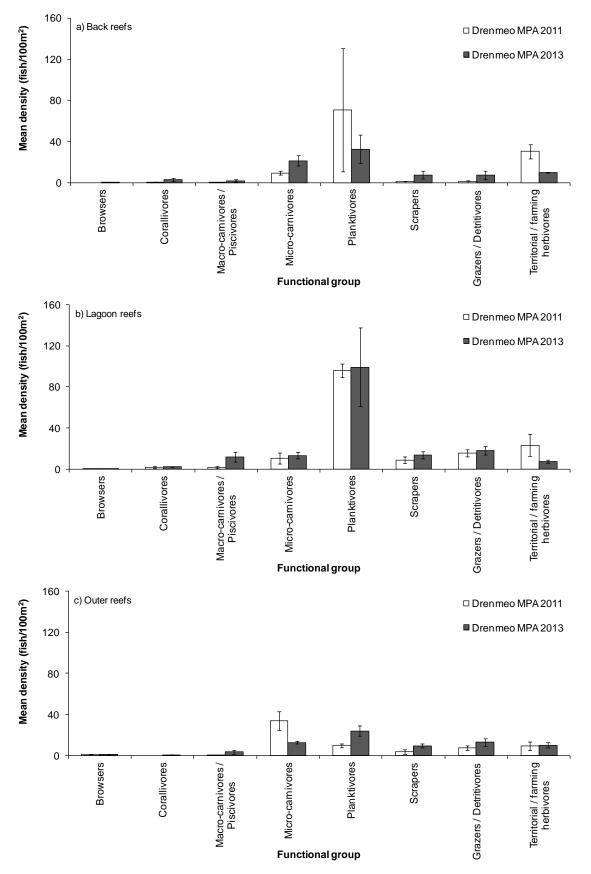



Figure 11 Mean density (± SE) of common finfish families among a) back reef, b) lagoon reef and c) outer reef habitats of the Drenmeo MPA monitoring site during the 2011 and 2013 surveys.

Figure 12 Mean densities (± SE) of key functional groups among a) back reef, b) lagoon reef and c) outer reef habitats of the Drenmeo MPA monitoring site during the 2011 and 2013 surveys.

Laura 1

Finfish assemblages of the Laura 1 site have been monitored at four habitats during the project (Table 11; Figure 13). Reef flat, lagoon reef and outer reef habitats were surveyed in both 2011 and 2013, while the finfish assemblages of back reef habitats were surveyed for the first time in 2013 (Table 11).

Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Reef flat			
T25	7.186417	171.046800	2011, 2013
T26	7.186033	171.046150	2013
T27	7.184917	171.046150	2011, 2013
Back reef			
T43	7.184933	171.050417	2013
T44	7.183833	171.050067	2013
T45	7.183133	171.049567	2013
Lagoon reef			
T13	7.194767	171.057183	2011, 2013
T14	7.194283	171.056067	2011, 2013
T15	7.193183	171.055233	2011, 2013
Outer reef			
T19	7.190083	171.042333	2011, 2013
T20	7.188200	171.041483	2011, 2013
T21	7.187050	171.041067	2011, 2013

Table 11 Details of finfish monitoring transects within the Laura 1 monitoring site.

Finfish diversity within the Laura 1 monitoring site was considerably higher during the 2013 survey relative to 2011 for all habitats examined (Table 12). Relative to other habitats, transects on the reef flat had low functional groups diversity, with corallivores and macro-carnivores/piscivores absent in 2011 and browsers absent in 2013. Browsers were absent on the lagoon reef in 2011. In 2013, all functional groups were represented on the back, lagoon and outer reef habitats (Table 12).

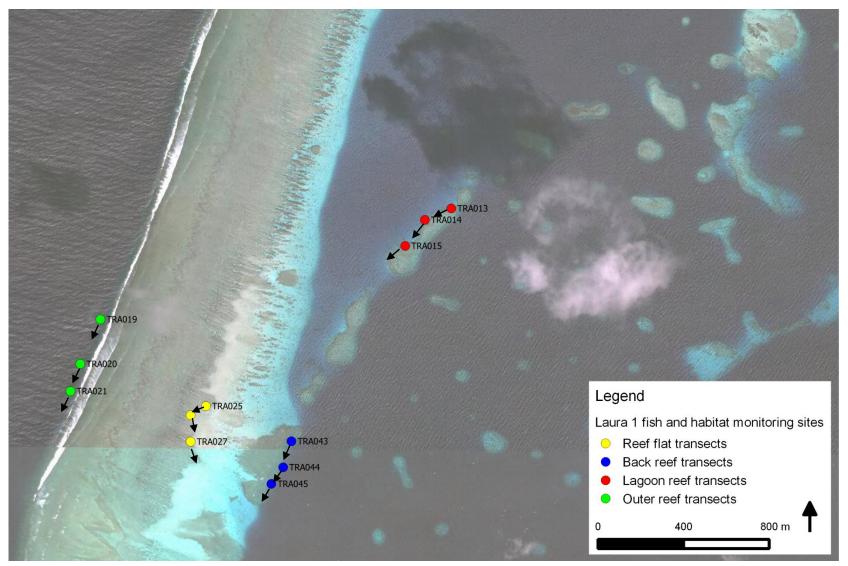
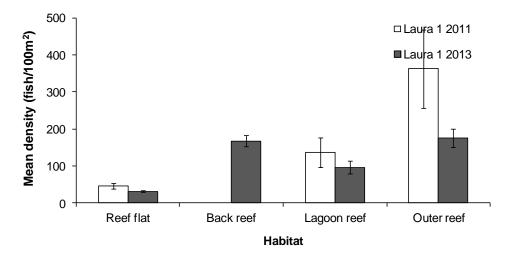



Figure 13 Location of finfish and fine-scale benthic habitat monitoring transects within the Laura 1 monitoring site. Black arrows (not to scale) indicate the approximate direction of transects.

Table 12	Total number of families, genera and species, and diversity of finfish observed at
	reef flat, back, lagoon and outer reef habitats of the Laura 1 monitoring site, 2011 &
	2013.

Parameter	Reef	Reef-flat		Back-reef		Lagoon-reef		Outer-reef	
rarameter	2011	2013	2011	2013	2011	2013	2011	2013	
No. of families	8	13	-	19	10	19	16	22	
No. of genera	21	27	-	52	28	42	46	60	
No. of species	34	43	-	111	54	93	94	117	
Diversity	25±5	27±2	-	68±5	26±3	54±1	50±13	70±5	
Functional groups	6/8	7/8	-	8/8	7/8	8/8	8/8	8/8	

No significant differences in mean total density were apparent among surveys for any of the habitats examined within the Laura 1 monitoring site (Figure 14). Mean densities of Zanclidae on the lagoon reef transects were slightly (yet significantly) higher in 2013 than 2011 (P = 0.027) (Figure 15). On the outer reef, mean densities of Lutjanidae were higher in 2013 relative to 2011 (P = 0.011), while mean densities of Holocentridae were lower (P = 0.005). Mean densities of Serranidae on the outer reef appeared lower in 2013 relative to 2011 (Figure 15), mainly resulting from decreases in densities of *Pseudanthias bartlettorum*, *P. dispar* and *P. pascalus*, however, these declines were not statistically significant.

Figure 14 Mean total density of finfish (± SE) among survey years and habitats at the Laura 1 monitoring site.

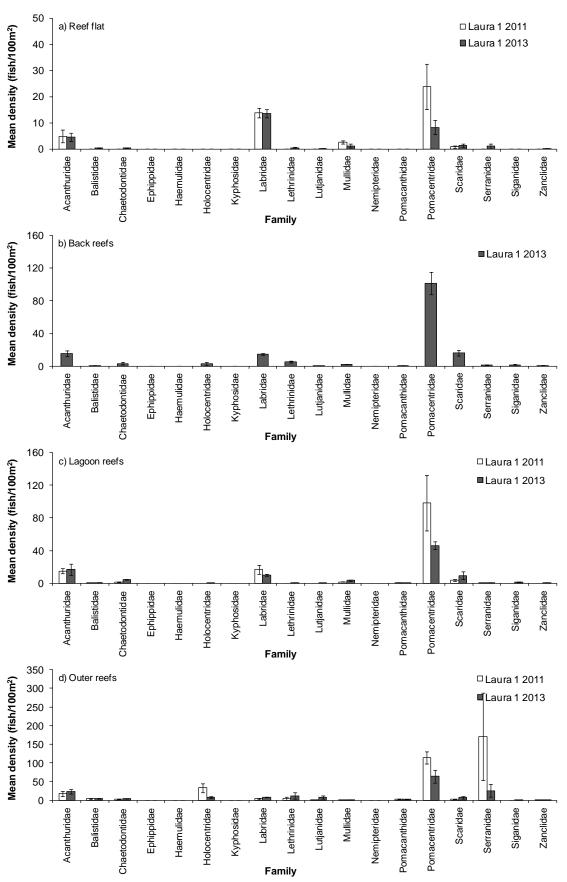
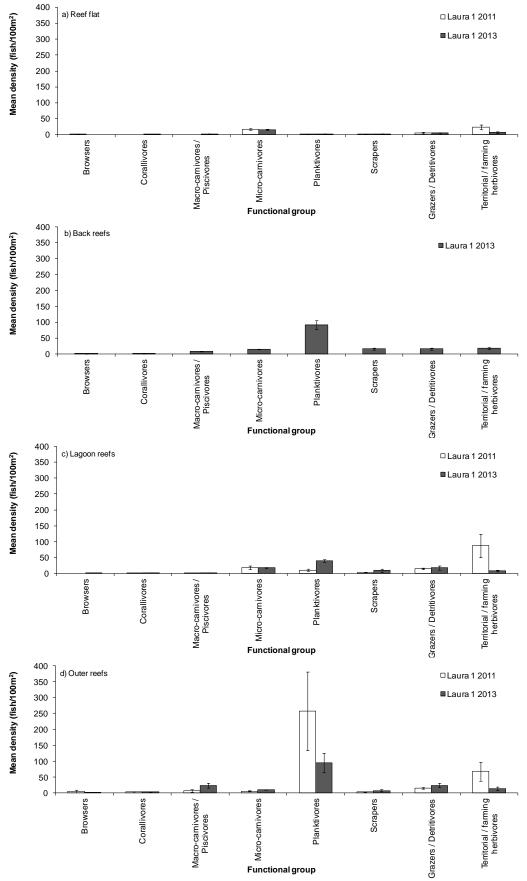



Figure 15 Mean densities (± SE) of common finfish families among a) reef flat, b) back reef, c) lagoon reef and d) outer reef habitats of the Laura 1 monitoring site during the 2011 and 2013 surveys.

Figure 16 Mean densities (± SE) of key functional groups among a) reef flat, b) back reef, c) lagoon reef and d) outer reef habitats of the Laura 1 monitoring site during the 2011 and 2013 surveys.

Laura 2

Finfish assemblages of the Laura 2 site have been monitored at three reef zones during the project (Table 13; Figure 17). Back reef and outer reef habitats were surveyed in 2011 and 2013, while benthic habitats of lagoon reef habitats were surveyed for the first time in 2013.

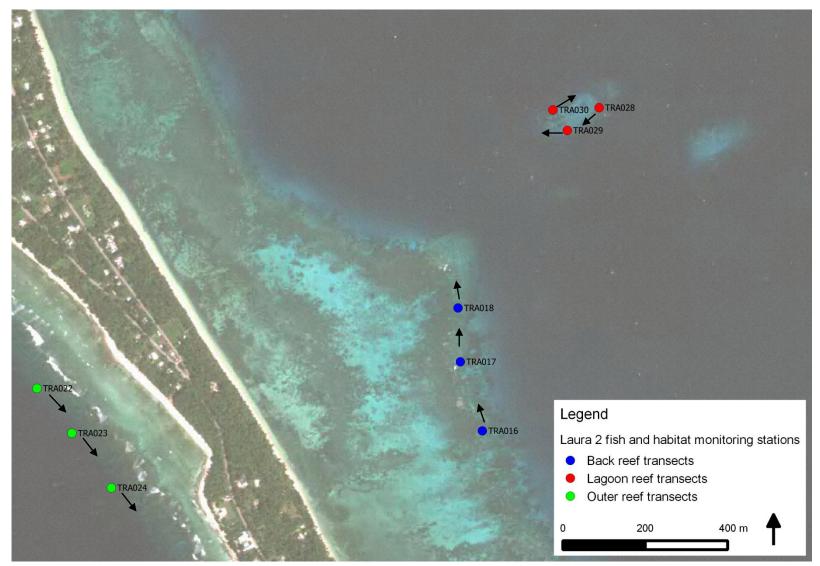
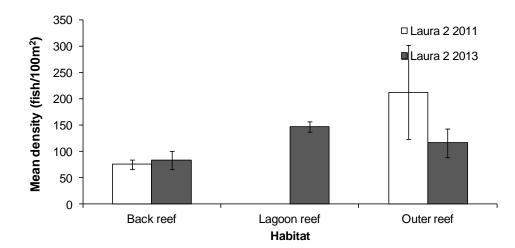

	•		e
Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Back reef			
T16	7.132083	171.050517	2011, 2013
T17	7.133600	171.050033	2011, 2013
T18	7.134783	171.049983	2011, 2013
Lagoon reef			
T28	7.139183	171.053083	2013
T29	7.138683	171.052383	2013
T30	7.139133	171.052067	2013
Outer reef			
T22	7.133017	171.040733	2011, 2013
T23	7.132033	171.041500	2011, 2013
T24	7.130833	171.042367	2011, 2013

Table 13Details of finfish monitoring transects within the Laura 2 monitoring site.

Consistent with other monitoring sites, finfish diversity and the number of families, genera and species observed within the Laura 2 site was considerably higher during the 2013 survey relative to 2011 for all habitats examined (Table 14). The number of functional groups present was similar among surveys, with only browsers absent from the back reef of this site in 2013 (Table 14; Figure 20).


Table 14	Total number of families, genera and species, and diversity of finfish observed at
	back, lagoon and outer reef habitats of the Laura 2 monitoring site, 2011 and 2013.

Parameter	Back-reef		Lagoon-reef		Outer-reef	
rarameter	2011	2013	2011	2013	2011	2013
No. of families	10	17	-	23	17	21
No. of genera	25	41	-	54	40	58
No. of species	41	88	-	103	70	110
Diversity	24±1	48±2	-	59±7	36±12	66±6
Functional groups	8/8	7/8	-	8/8	8/8	8/8

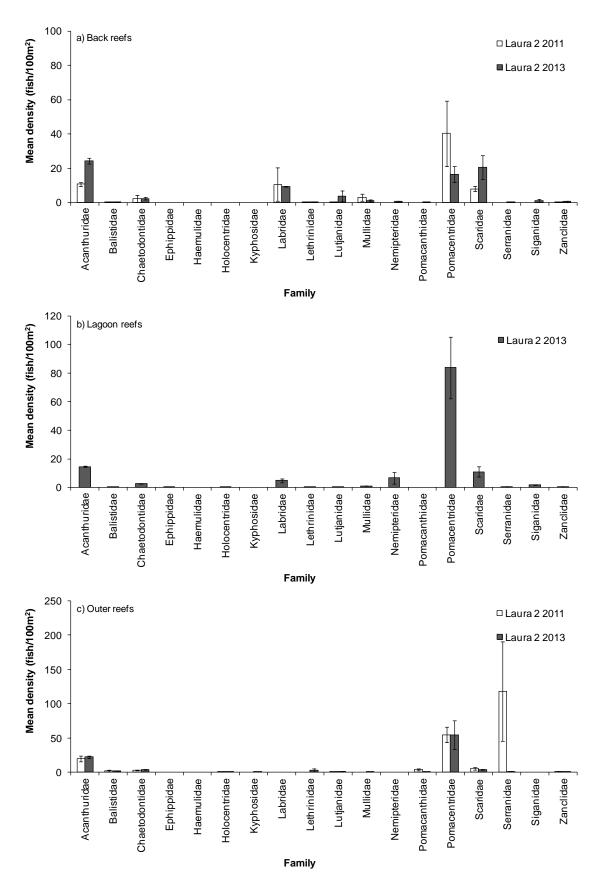


Figure 17 Location of finfish and fine-scale benthic habitat monitoring transects within the Laura 2 monitoring site. Black arrows (not to scale) indicate the approximate direction of transects.

No significant differences were observed in mean total density among surveys for any habitat within the Laura 2 monitoring site (Figure 18). Similarly, no significant differences were evident in densities of any of the individual indicator families or functional groups on any reef habitat among the 2011 and 2013 surveys (Figure 19; Figure 20). Densities of Serranidae on outer reefs appeared lower during the 2013 surveys relative to 2011, mainly due to decreases in densities of *Pseudanthias bartlettorum* and *P. pascalus*, however these declines were not significant at P = 0.05.

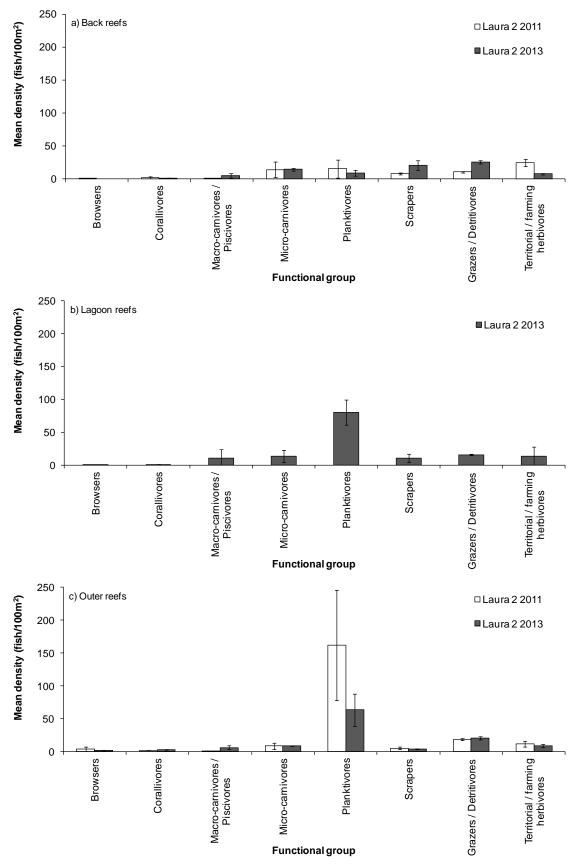


Figure 18 Mean total density of finfish (± SE) among survey years and habitats at the Laura 2 monitoring site.

Majuro Atoll coastal fisheries monitoring report #2

Figure 19 Mean densities (± SE) of common finfish families among a) back reef, b) lagoon reef and c) outer reef habitats of the Laura 2 monitoring site during the 2011 and 2013 surveys.

Figure 20 Mean densities (± SE) of key functional groups among a) back reef, b) lagoon reef and c) outer reef habitats of the Laura 2 monitoring site during the 2011 and 2013 surveys.

Majuro

Finfish assessments at the Majuro site in both 2011 and 2013 covered three habitats, with three 50 m transects completed in each habitat (Figure 21; Table 16).

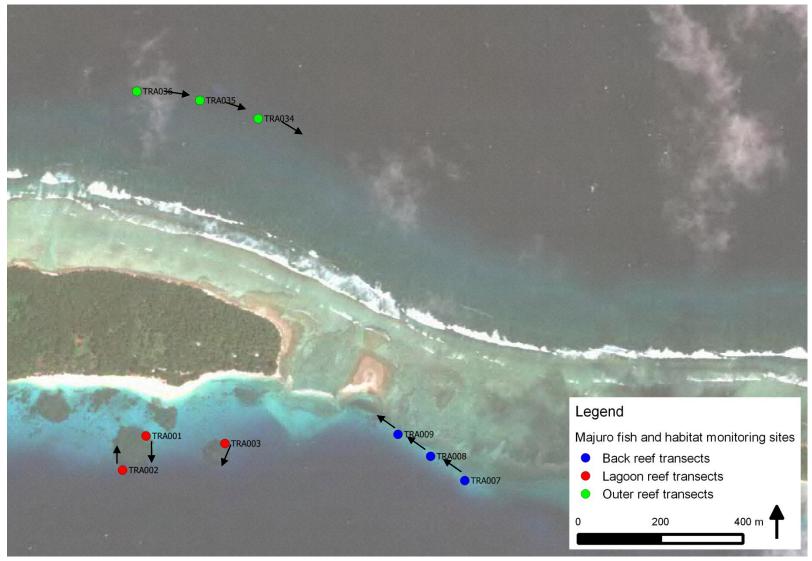
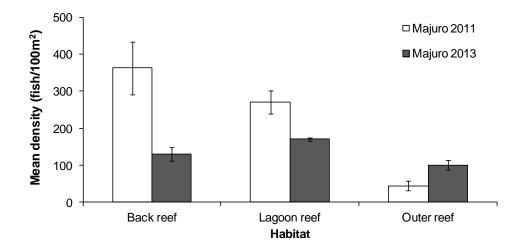

Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Back reef			
T7	7.155617	171.220450	2011, 2013
Т8	7.156150	171.219700	2011, 2013
Т9	7.156633	171.218983	2011, 2013
Lagoon reef			
T1	7.156600	171.213450	2011, 2013
T2	7.155850	171.212933	2011, 2013
Т3	7.156433	171.215183	2011, 2013
Outer reef			
T34	7.163567	171.215917	2011, 2013
T35	7.163967	171.214633	2011, 2013
T36	7.164167	171.213250	2011, 2013

 Table 15
 Details of finfish monitoring transects within the Majuro monitoring site.

Consistent with other sites, finfish diversity and the number of families, genera and species observed within the Majuro monitoring site was considerably higher during the 2013 survey relative to 2011 for all habitats examined (Table 16). Most habitats supported all functional groups during both the 2011 and 2013 surveys, with browsers absent from both the back reef and outer reef during the 2011 survey (Table 16).


Table 16	Total number of families, genera and species, and diversity of finfish observed at
	back, lagoon and outer reef habitats of the Majuro monitoring site, 2011 and 2013.

Parameter	Back-reef		Lagoon-reef		Outer-reef	
f al ameter	2011	2013	2011	2013	2011	2013
No. of families	11	21	14	20	10	16
No. of genera	34	52	39	55	30	49
No. of species	66	97	72	115	49	96
Diversity	31±4	43±18	41±7	62±6	22±2	58±2
Functional groups	7/8	8/8	8/8	8/8	7/8	8/8

Figure 21 Location of finfish and fine-scale benthic habitat monitoring transects within the Majuro monitoring site. Black arrows (not to scale) indicate the approximate direction of transects.

Mean total density of finfish on back reef transects was significantly lower in 2013 compared to 2011 (P = 0.027), largely resulting from significant declines in the densities of territorial/farming herbivores, specifically the damselfish *Pomacentrus coelestis* (Figure 23; Figure 24).

Figure 22 Mean total density of finfish (± SE) among survey years and habitats at the Majuro monitoring site.

No significant differences were observed in mean total density, or the mean density of any of the 18 indicator families or eight functional groups for the lagoon reef habitats of the Majuro site. Mean total densities of finfish assemblages on the outer reef appeared slightly higher in 2013 than 2011, with densities of Chaetodontidae, Scaridae and subsequently the functional group scrapers each exhibiting significant increases in 2013 (P < 0.05) (Figure 23; Figure 24).

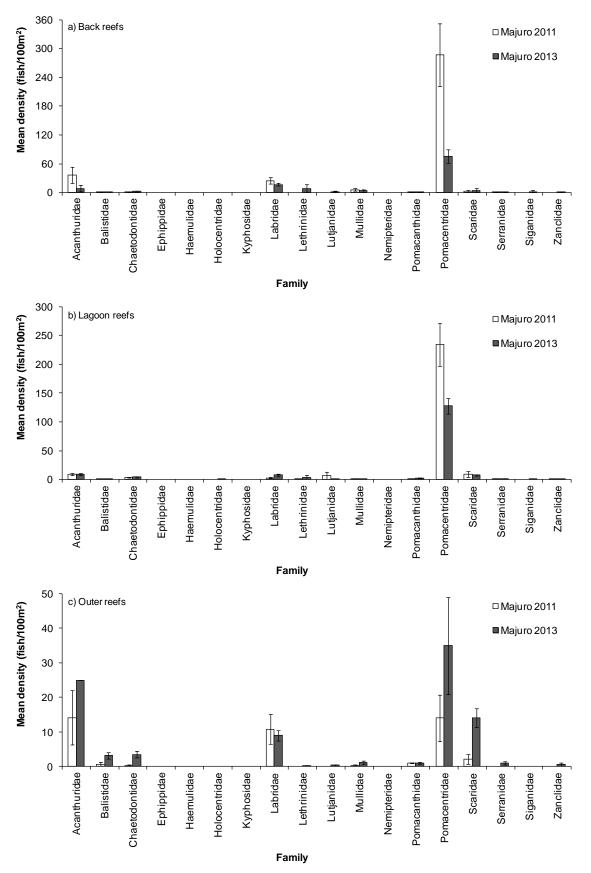
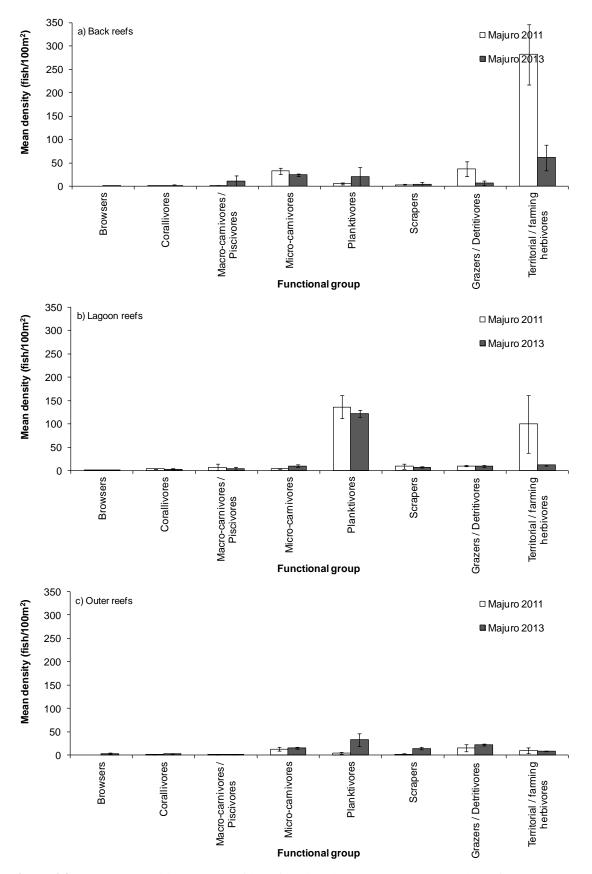



Figure 23 Mean densities (± SE) of common finfish families among a) back reef, b) lagoon reef and c) outer reef habitats of the Majuro monitoring site during the 2011 and 2013 surveys.

Figure 24 Mean densities (± SE) of key functional groups among a) back reef, b) lagoon reef and c) outer reef habitats of the Majuro monitoring site during the 2011 and 2013 surveys.

Woja MPA

Finfish communities of the Woja MPA were surveyed for the first time in 2013. Three 50 m transects were completed along each of the back reef and outer reefs within the MPA (Table 17; Figure 25). No lagoon reef habitats were available for survey within the MPA.

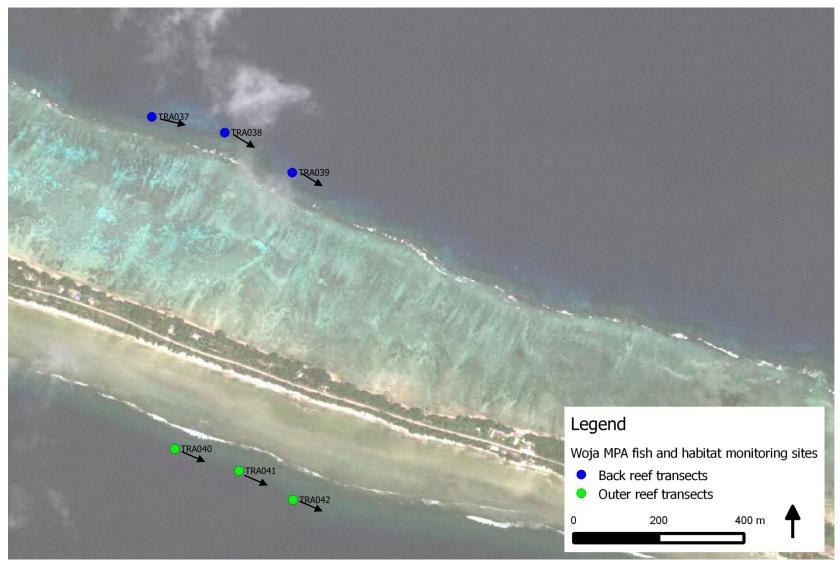
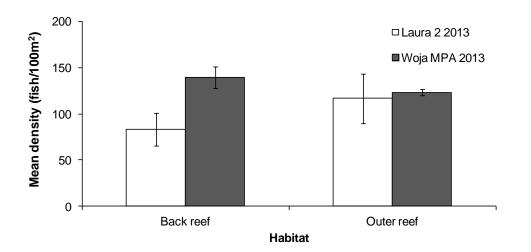
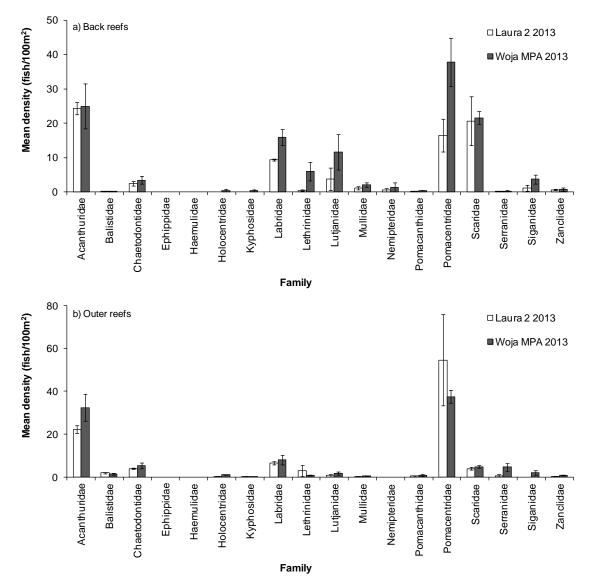

Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Back reef			
Т37	7.094867	171.129783	2013
T38	7.094533	171.131333	2013
Т39	7.093683	171.132767	2013
Outer reef			
T40	7.087817	171.130267	2013
T41	7.08735	171.131633	2013
T42	7.086733	171.132783	2013

Table 17Details of finfish monitoring transects within the Woja MPA monitoring site.

Finfish diversity was higher within the Woja MPA compared to the Laura 2 site for both back reef and outer reef habitats (Table 18). All functional groups were observed on both the back reef and outer reef of the MPA during the 2013 survey (Table 18).

Table 18	Total number of families, genera and species, and diversity of finfish observed at
	back and outer reef habitats of the Laura 2 and Woja MPA monitoring sites, 2013.


Parameter	Back	x-reef	Outer-reef		
rarameter	Laura 2 2013	Woja MPA 2013	Laura 2 2013	Woja MPA 2013	
No. of families	17	21	21	19	
No. of genera	41	51	58	57	
No. of species	88	104	110	114	
Diversity	48±2	60±4	66±6	73±7	
Functional groups	7/8	8/8	8/8	8/8	


Figure 25 Location of finfish and fine-scale benthic habitat monitoring transects within the Woja MPA monitoring site. Black arrows (not to scale) indicate the approximate direction of transects.

No significant differences were observed in mean total density or density of individual families or functional groups for back reef habitats of the Woja MPA and the comparably-situated Laura 2 site in 2013 (Figure 26). Similarly, no significant differences in mean total density were observed for the outer reef of the Woja MPA and the Laura 2 site. Mean densities of Siganidae however were slightly higher within the MPA (P = 0.029), suggesting the MPA offers a degree of protection for this group.

In terms of biomass, no significant differences were observed amongst the Woja MPA and the comparably-situated Laura 2 site in mean total biomass or the biomass of the selected indicator families or key functional group at any habitat (data not presented for purposes of brevity).

Figure 26 Mean total density of finfish (± SE) among the Laura 2 and Woja MPA monitoring sites, 2013.

Figure 27 Mean densities (±SE) of common finfish families among a) back reef and b) outer reef habitats of the Laura 2 and Woja MPA monitoring sites during the 2013 survey.

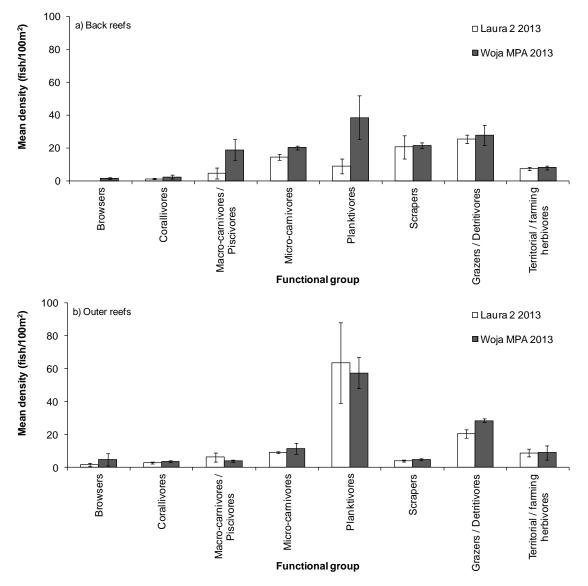
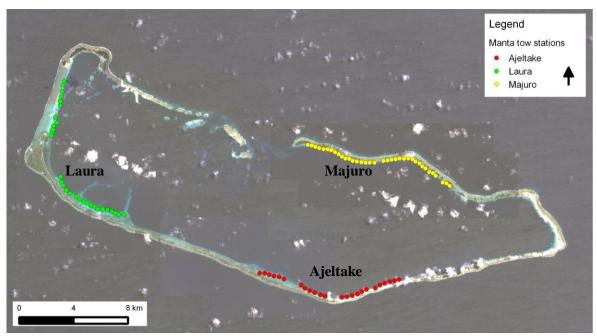


Figure 28Mean densities (± SE) of key functional groups among a) back reef and b) outer reef
habitats of the Laura 2 and Woja MPA monitoring sites during the 2013 survey.


5. Benthic Habitat Assessment

Methodologies

Broad-scale assessments

Data collection

Broadscale benthic habitat assessments were conducted by manta tow at three sites: Ajeltake, Laura and Majuro (Figure 29). Here, a surveyor was towed on a manta board behind a boat at a speed of approximately 3-4 km/h. The surveyor recorded percent cover of substrate types, including live coral, dead coral, bleached coral, coralline algae (e.g. *Halimeda*) and other macroalgae within a 300 m long x 2 m wide transect. Transect lengths were determined using the odometer function within the trip computer option of a Garmin Etrex GPS, and transects were typically conducted at depths of 1–6 metres. Six 300 m manta tow replicates were conducted within each site, with GPS positions recorded at the start and end of each transect to an accuracy of within ten meters.

Figure 29 Location of broad-scale (manta tow) benthic habitat monitoring regions at Majuro Atoll. Each point represents a single 300 m replicate within each station.

Data analysis

Summary graphs of mean percentage cover (\pm SE) of each substrate type, based on cover of each individual 300 m x 2m transect, were generated for each site (Ajeltake, Laura and Majuro) and survey year (2011 and 2013).

Fine-scale assessments

Data collection

Fine-scale benthic habitat assessments were conducted using a photoquadrat approach at the same locations and transects as the finfish assessments (Figure 7) and were conducted immediately after the finfish surveys. Up to 50 photographs of the benthos were taken per transect (with one photo taken approximately every metre) using a housed underwater camera and a quadrat frame measuring an area of 0.25 m^2 . Transects were laid parallel to the reef. A GPS position was recorded at the beginning of each transect.

Figure 30 Lyla Lemari of the Marshall Islands Marine Resources Authority conducting a photoquadrat survey on the outer reef of the Laura 2 monitoring site.

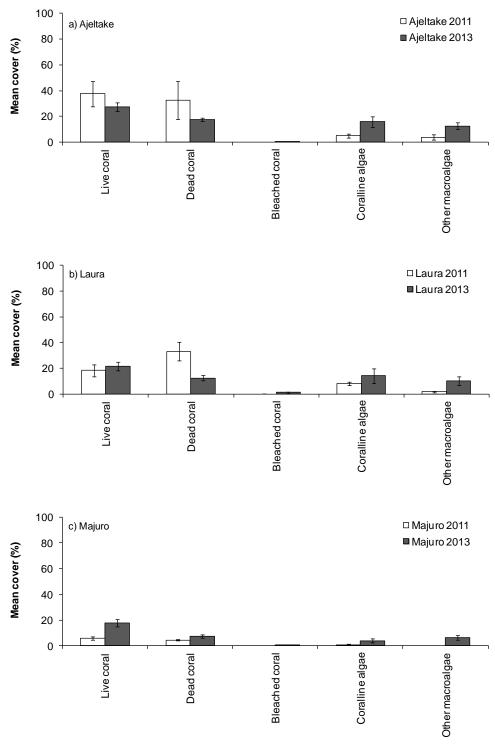
Data processing and analysis

The habitat photographs were analyzed using SPC software (available online at <u>http://www.spc.int/CoastalFisheries/CPC/BrowseCPC</u>). Using this software, five randomly generated points were created on the downloaded photographs. The substrate under each point was identified based on the following substrate categories:

- 1. Live hard coral cover of different types of live hard coral, identified to genus level¹;
- 2. Other invertebrates cover of invertebrate types including Anemones, Ascidians, Cup sponge, Discosoma, Dysidea sponge, Gorgonians, Olive sponge, Terpios sponge, Other sponges, Soft coral, Zoanthids, and Other invertebrates (other invertebrates not included in this list);
- 3. Macroalgae cover of macroalgae Asparagopsis, Blue-green algae, Boodlea, Bryopsis, Chlorodesmis, Caulerpa, Dictyota, Dictosphyrea, Galaxura, Halimeda, Liagora, Lobophora, Mastophora, Microdictyton, Neomeris, Padina, Sargassum, Schizothrix, Turbinaria, Tydemania, Ulva, and Other macroalgae (other macroalgae not included in this list);
- 4. Branching coralline algae *Amphiroa*, *Jania*, *Branching coralline general*;
- 5. Crustose coralline algae;
- 6. Fleshy coralline algae (growing on fixed substrate, e.g. Peyssonnelia);
- 7. Turf algae;
- 8. Seagrass cover of seagrass genera Enhalus, Halodule, Halophila, Syringodium, Thalassia, Thalassodendron;
- 9. Chrysophyte;
- 10. Sand 0.1 mm < hard particles < 30 mm;
- 11. Rubble carbonated structures of heterogeneous sizes, broken and removed from their original locations; and
- 12. Pavement.

In addition, the status of corals (live, recently dead or bleached) was noted for each coral genera data point. Recently dead coral was defined as coral with newly exposed white skeletons with visible corallites and no polyps present, while bleached coral was defined as white coral with polyps still present. All data processing and identifications were checked by an experienced

¹ Porites species were further divided into Porites, Porities-rus and Porites-massive categories.


surveyor. Resulting data were extracted to MS Excel and summarized as percentages. Summary graphs of mean percentage cover $(\pm SE)$ for each site were generated to further explore patterns of each major substrate category by habitat and survey year.

To further explore patterns among surveys, coverage data of each major benthic category in each individual transect were ln(x+1) transformed to reduce heterogeneity of variances and analysed by two-way ANOVA using Statistica 7.1, with survey year (2011 and 2013) and site as fixed factors in the analysis. Tukey-Kramer post-hoc pairwise tests were used to identify specific differences between factors at P = 0.05. Where transformed data failed Cochran's test for homogeneity of variances (P < 0.05), an increased level of significance of P = 0.025 was used. As with the finfish assessments, this design allowed for a comparison of each site over time, and an assessment of the performance of the individual protected areas vs. comparably-situated sites that are open to fishing (i.e. Drenmeo MPA vs. Majuro 'open' site, Woja MPA vs. Laura 2 'open' site). Due to obvious differences in surrounding land use, oceanic influence and tidal flushing among both open to fishing sites and MPA sites, no attempt was made to pool individual sites into broader groups (e.g. 'open' vs. 'closed') in the analyses.

Results

Broad-scale assessments

Cover of live coral, coralline algae and macroalgae increased slightly at the Majuro site (Figure 31). At both the Ajeltake and Laura sites, benthic composition changed from a coral-dominated state in 2011 to an algae-dominated state in 2013, with the cover of algae (all species combined) exceeding that of live coral in 2013 (Figure 31).

Benthic category

Figure 31 Percent cover of coral and algae observed during broad-scale habitat assessments via manta tow.

Fine-scale assessments

Drenmeo MPA site

Benthic habitat assessments within the Drenmeo MPA in both 2011 and 2013 covered three habitats, with three 50 m transects completed in each habitat (Table 19; Figure 9).

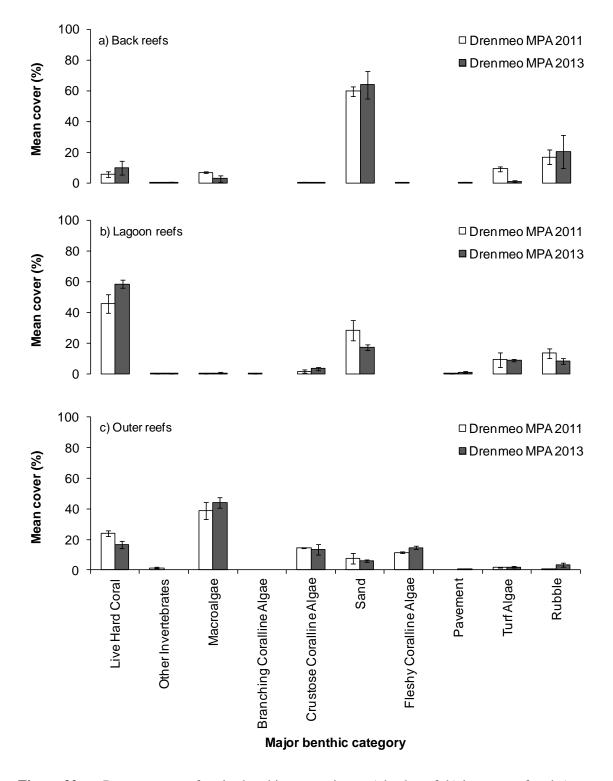

site.			
Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Back reef			
T10	7.120633	171.320583	2011, 2013
T11	7.120800	171.321383	2011, 2013
T12	7.120867	171.322117	2011, 2013
Lagoon reef			
T4	7.121267	171.316483	2011, 2013
T5	7.120517	171.316583	2011, 2013
T6	7.120233	171.317450	2011, 2013
Outer reef			
T31	7.126917	171.320333	2011, 2013
T32	7.127683	171.319333	2011, 2013
T33	7.128483	171.318250	2011, 2013

 Table 19
 Details of benthic habitat monitoring transects within the Drenmeo MPA monitoring site.

Back reef habitats of the Drenmeo MPA site showed little difference among surveys (Figure 32). Cover of turf algae decreased significantly from $9.33\pm1.71\%$ in 2011 to $1.34\pm0.27\%$ in 2013 (P = 0.004). In general, back reef habitats during both the 2011 and 2013 surveys were characterised by a relatively high percent cover of sand and rubble, and low percent cover of live hard corals (Figure 32).

Lagoon reefs of the Drenmeo MPA were dominated by live hard coral (Figure 32; Figure 33). A slight increase in percent cover of live hard coral (mainly due to an increase in cover of *Porites* and *Porites-rus*), and a slight decrease in cover of sand, was evident among the 2011 and 2013 surveys, however these changes were not significant.

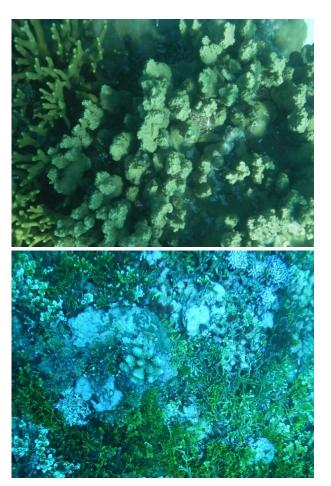

Few differences in benthic habitat composition were evident on the outer reefs of the Drenmeo MPA site between the 2011 and 2013 surveys (Figure 32). Outer reefs during both surveys were characterised by a high cover of macroalgae (primarily *Halimeda* and *Microdictyon*), fleshy coralline algae (*Peyssonnelia*) and live hard coral (primarily *Acropora*, *Montipora* and *Pocillopora*) (Figure 32; Figure 34).

Figure 32 Percent cover of major benthic categories at a) back reef, b) lagoon reef and c) outer reef transects of the Drenmeo MPA monitoring site among 2011 and 2013 surveys.

Figure 33 Lagoon reef transects of the Drenmeo MPA were characterised by a high cover of *Porites cylindrica* and *Porites-rus*.

Figure 34 Benthic habitats of the outer reefs of the Drenmeo MPA was characterised by a high percent cover of macroalgae, in particular *Halimeda* spp.

Laura 1 site

Benthic habitats of the Laura 1 site have been monitored at four habitats during the project (Table 20; Figure 13). Reef flat, back reef and outer reef habitats were surveyed in both 2011 and 2013, while benthic habitats of lagoon reef habitats were surveyed in 2013 only.

Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Reef flat			
T25	7.186417	171.046800	2011, 2013
T26	7.186033	171.046150	2011, 2013
T27	7.184917	171.046150	2011, 2013
Back reef			
T43	7.184933	171.050417	2011, 2013
T44	7.183833	171.050067	2011, 2013
T45	7.183133	171.049567	2011, 2013
Lagoon reef			
T13	7.194767	171.057183	2013
T14	7.194283	171.056067	2013
T15	7.193183	171.055233	2013
Outer reef			
T19	7.190083	171.042333	2011, 2013
T20	7.188200	171.041483	2011, 2013
T21	7.187050	171.041067	2011, 2013

Table 20Details of benthic habitat monitoring transects within the Laura 1 monitoring site.

Benthic composition of both reef flat and back reef habitats of the Laura 1 site appeared largely similar among the 2011 and 2013 surveys. On the reef flat, the cover of turf algae was slightly lower, and cover of rubble slightly higher, in 2013 relative to 2011, while slight increases in the cover of live hard coral and macroalgae, and decreases in cover of sand were observed for both habitats in 2013 compared to 2011 (however these were not statistically significant) (Figure 35).

Lagoon reef habitats at the Laura 1 site were surveyed for the first time in 2013. These habitats were characterised by a relatively high cover of live hard coral (primarily of the genera *Acropora*), and moderate cover of sand and macroalgae (predominately *Halimeda* spp.) (Figure 35).

Few changes in benthic habitat composition were evident on the outer reefs of the Laura 1 monitoring site (Figure 35). The cover of turf algae decreased from $10.7\pm1.2\%$ in 2011 to $2.1\pm0.3\%$ in 2013, while the cover of live hard coral appeared slightly higher in 2013, largely due to an increase in the percent cover of the genera *Acropora* and *Porites* (Figure 35). Further surveys are required to assess whether these changes are consistent over time.

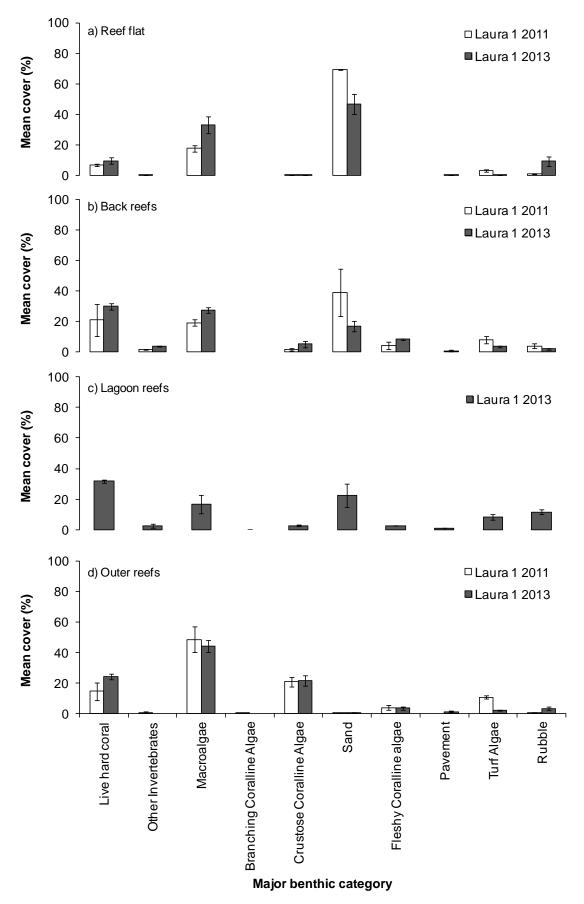


Figure 35 Percent cover of major benthic categories at a) reef flat, b) back reef, c) lagoon reef and d) outer reef transects of the Laura 1 monitoring site among 2011 and 2013 surveys.

Laura 2 site

Benthic habitats of the Laura 2 site have been monitored at three reef zones during the project (Table 21; Figure 17). Back reef and outer reef habitats were surveyed in 2011 and 2013, while benthic habitats of lagoon reef habitats were surveyed for the first time in 2013.

Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Back reef			
T16	7.132083	171.050517	2011, 2013
T17	7.133600	171.050033	2011, 2013
T18	7.134783	171.049983	2011, 2013
Lagoon reef			
T28	7.139183	171.053083	2013
T29	7.138683	171.052383	2013
T30	7.139133	171.052067	2013
Outer reef			
T22	7.133017	171.040733	2011, 2013
T23	7.132033	171.041500	2011, 2013
T24	7.130833	171.042367	2011, 2013

Table 21Details of benthic habitat monitoring transects within the Laura 2 monitoring site.

No changes in mean live hard coral cover were evident on the back reef habitats of the Laura 2 site (Figure 36). The cover of crustose coralline algae and rubble appeared slightly higher in 2013 relative to 2011, while the cover of macroalgae and turf algae decreased slightly amongst surveys, however these differences were not statistically significant (Figure 36).

Lagoon reef habitats at the Laura 2 site were surveyed for the first time in 2013. These habitats were characterised by a relatively high cover of live hard coral (primarily *Porites*, *Porites-rus* and *Porites*-massive types), and moderate cover of sand (Figure 36).

Outer reef habitats of the Laura 2 site appeared largely similar amongst surveys. Slight decreases in cover of turf algae (P = 0.045) and 'other invertebrates' (P = 0.013) were observed, with the latter resulting from a decline in percent cover of soft coral from 7.0 \pm 0.5% in 2011 to 1.5 \pm 0.5% in 2013 (Figure 36).

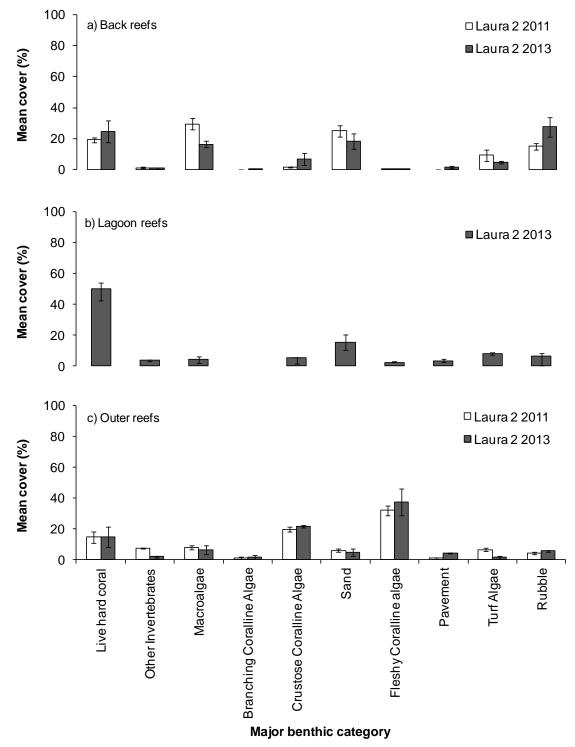
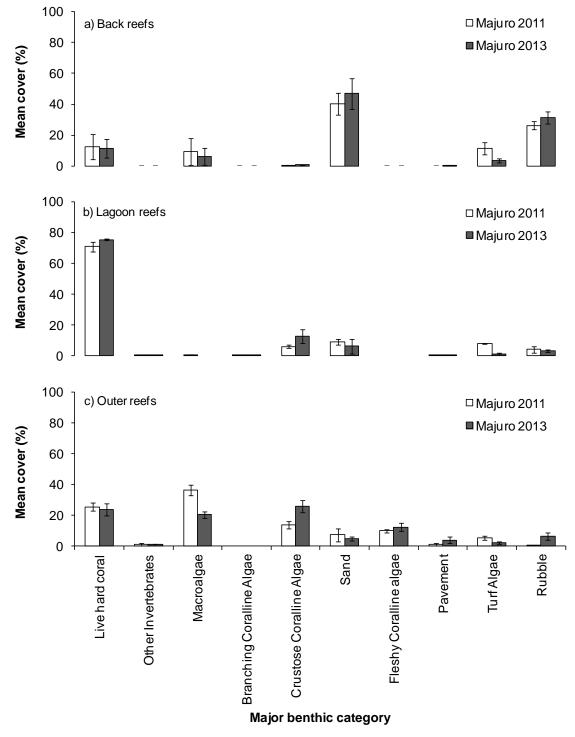
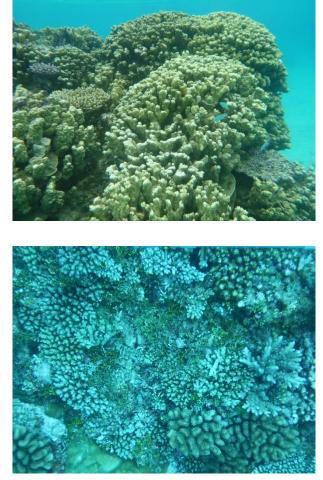


Figure 36Percent cover of major benthic categories at a) back reef, b) lagoon reef and c) outer
reef transects of the Laura 2 monitoring site among 2011 and 2013 surveys.


Majuro site

Benthic habitat assessments within the Majuro site in both 2011 and 2013 covered three habitats, with three 50 m transects completed in each habitat (Table 22; Figure 21).

Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Back reef			
T7	7.155617	171.220450	2011, 2013
T8	7.156150	171.219700	2011, 2013
Т9	7.156633	171.218983	2011, 2013
Lagoon reef			
T1	7.156600	171.213450	2011, 2013
T2	7.155850	171.212933	2011, 2013
T3	7.156433	171.215183	2011, 2013
Outer reef			
T34	7.163567	171.215917	2011, 2013
T35	7.163967	171.214633	2011, 2013
T36	7.164167	171.213250	2011, 2013


Table 22Details of benthic habitat monitoring transects within the Majuro monitoring site.

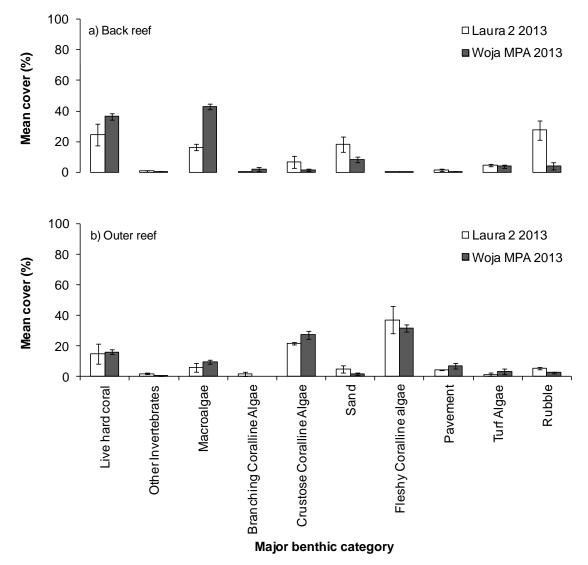
Few changes were evident in benthic composition of any habitat within the Majuro monitoring site (Figure 37). A slight decrease in turf algae and slight increase in cover of live hard coral were apparent for lagoon reef habitats between the 2011 and 2013 surveys (Figure 37). Increases in hard coral cover, while not statistically significant, were due to slightly higher covers of the genera *Pavona*, *Porites* and *Porites-rus* in 2013 relative to 2011 (Figure 37; Figure 38). For outer reef habitats, a slight decrease in macroalgae, and slight increase in crustose coralline algae, was evident between the 2011 and 2013 surveys (Figure 37), however these changes were not statistically significant. Outer reef transects of the Majuro site were dominated by live hard coral (in particular *Acropora* spp.), macroalgae (particularly *Halimeda* spp.), crustose coralline algae and fleshy coralline algae (*Peyssonnelia* sp.) (Figure 39).

Figure 37 Percent cover of major benthic categories at a) back reef, b) lagoon reef and c) outer reef transects of the Majuro monitoring site among 2011 and 2013 surveys.

Figure 38 Lagoon reef habitats of the Majuro monitoring site had a high cover of live coral, in particular *Porites-rus*.

Figure 39 Outer reef habitats of the Majuro monitoring site had a high cover of live coral (in particular *Acropora* spp.), *Halimeda* spp. and crustose coralline algae.

Woja MPA site


The benthic habitats of the Woja MPA were surveyed for the first time in 2013. Three 50 m transects were completed along each of the back reef and outer reefs within the MPA (Table 23; Figure 25). No lagoon reef habitats were available for survey at this site.

Habitat and transect	Latitude (N)	Longitude (E)	Years monitored
Back reef			
T37	7.094867	171.129783	2011, 2013
T38	7.094533	171.131333	2011, 2013
T39	7.093683	171.132767	2011, 2013
Outer reef			
T40	7.087817	171.120267	2011, 2013
T41	7.087350	171.131633	2011, 2013
T42	7.086733	171.132783	2011, 2013

Table 23Details of benthic habitat monitoring transects within the Woja MPA monitoring site.

Back reefs of the Woja MPA were characterised by relatively high cover of macroalgae and live coral (Figure 40). The dominant coral genera were *Acropora*, *Porites* and *Porites-rus*, while the dominant algae genera were *Dictyota* and *Halimeda* (Figure 41). Mean cover of both live hard coral and macroalgae were slightly higher on the back reefs of the Woja MPA than those of the comparably-situated Laura 2 site (Figure 40).

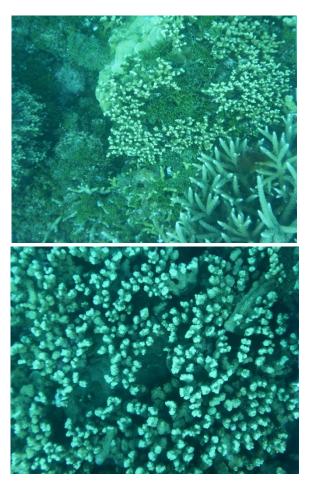

Outer reef habitats of the Woja MPA were characterised by a relatively high percent cover of fleshy coralline algae (*Peyssonnelia*) and macroalgae (*Halimeda* spp.) (Figure 40). In contrast to back-reef habitats, no differences in broadscale benthic habitat composition were evident for outer reefs among the Woja MPA and Laura 2 monitoring sites (Figure 40). Slight differences in coral community composition were evident, with outer reef habitats of the Woja MPA having a slightly higher percent cover of *Isopora* and *Porites*-massive corals, and a lower percent cover of *Acropora* spp. relative to the outer reef of the Laura 2 monitoring site.

Figure 40 Percent cover of major benthic categories at a) back reef and b) outer reef transects of the Laura 2 and Woja MPA sites, 2013.

Figure 41 Benthic habitats of the Woja MPA were characterized by relatively high cover of macroalgae and live hard coral, in particular *Halimeda* spp. and *Acropora* spp.

Figure 42 A stand of *Porites-rus* within the back-reef of the Woja MPA.

6. Invertebrate Surveys Methods and Materials

Data collection

Broad-scale assessments

Invertebrate resources of Majuro Atoll were surveyed using two complementary techniques: 1) manta tows, and 2) reef-benthos transects (RBt). Broad-scale assessments were conducted by manta tow in three sites of Majuro Atoll: Laura, Majuro and Ajeltake (Figure 29). In these assessments, a snorkeler was towed behind a boat with a manta board for recording the abundance of large sedentary invertebrates (e.g. sea cucumbers) at an average speed of approximately 4km/hour (Figure 43; Table 24). Hand tally counters were also mounted on the manta board to assist with enumerating the common species on site. The snorkeller's observation belt was two metres wide and tows were conducted in depths typically ranging from one to ten metres. Each tow replicate was 300 m in length and was calibrated using the odometer function within the trip computer option of a Garmin Etrex GPS. Six 300 m manta tow replicates were conducted within each station, with the start and end GPS positions of each tow recorded to an accuracy of within ten meters.

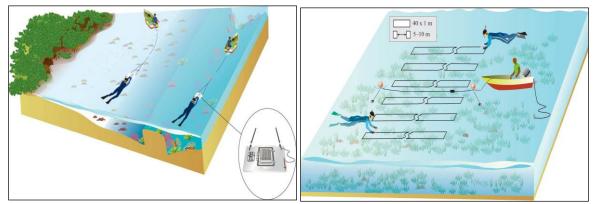


Figure 43 Diagrammatic representation of the two invertebrate survey methods used at Majuro Atoll during the 2011 and 2013 surveys: manta tow (left) and reef benthos transects (right).

Fine-scale assessments

Reef-benthos transects (RBt) were conducted to assess the abundance, size and condition of invertebrate resources and their habitat at finer-spatial scales. Eighteen RBt stations were established within Majuro Atoll, with stations established at the Laura (n = 6), Woja MPA (n = 3), Majuro (n = 6) and Drenmeo MPA (n = 3) regions (Figure 44). Reef-benthos transects were conducted by two snorkellers equipped with measuring instruments attached to their record boards (slates) for recording the abundance and size of invertebrate species. For some species, such as sea urchins, only abundance was recorded due to difficulty in measuring the size of these organisms. Each transect was 40 m long with a 1 m wide observation belt, conducted in depths ranging from one to three meters. The two snorkellers conducted three transects each, totalling six 40 m transects for each RBt station (Figure 43). The GPS position of each station was recorded in the centre of the station.

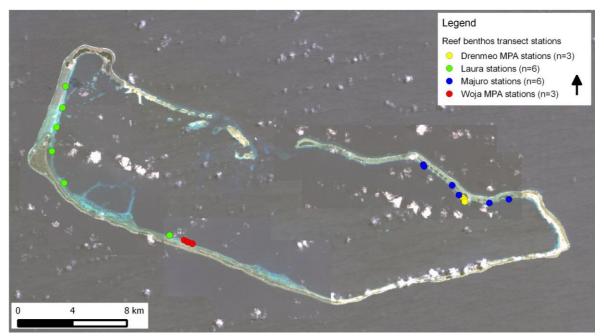


Figure 44 Location of reef-benthos transect (RBt) monitoring stations at Majuro Atoll.

Data analysis

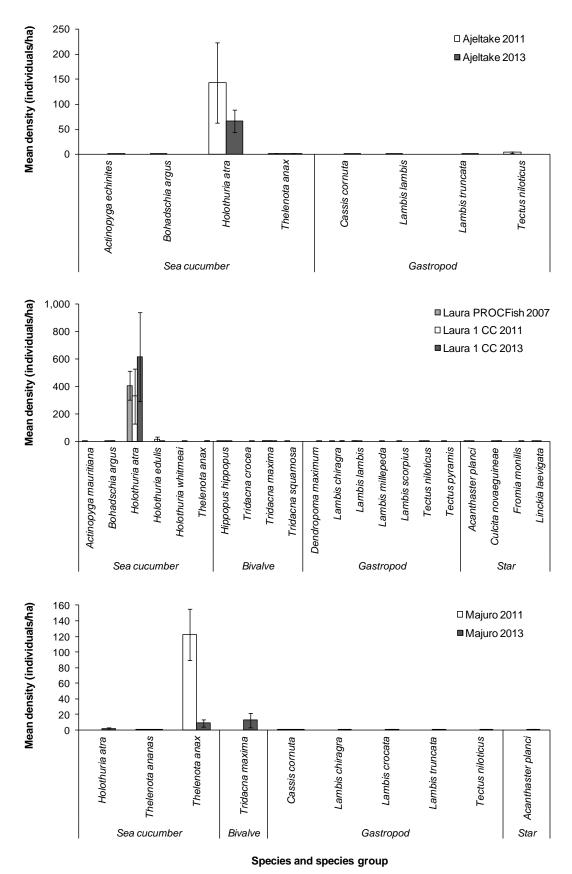
In this report, the status of invertebrate resources has been characterised using the following parameters:

- 1) richness the number of genera and species observed in each survey method;
- 2) diversity total number of observed species per site divided by the number of stations at that site;
- 3) mean density per station (individuals/ha); and
- 4) mean size (mm).

Additionally, mean densities of invertebrate species at the Laura stations in both 2011 and 2013 were compared against those collected during the PROCFish surveys in this region in 2007 (Pinca et al. 2009) for manta tow assessments.

Species group	Species analysed
Sea cucumbers	All species
Bivalves	All Tridacna species, Hippopus hippopus, Hippopus porcellanus
Gastropods	Cassis cornuta, Charonia tritonis, Dendropoma maximum, All Lambis species, Tectus niloticus, Tectus pyramis, Trochus maculatus, Turbo marmoratus
Starfish	Acanthaster planci, Anchitosia queenslandensis, Choriaster granulatus, Cornaster nobilis, Culcita novaeguineae, Fromia monilis, All Linckia species, Protoreaster nodosus, Tropiometra afra, Valvaster striatus

Table 24Species analysed in manta tow assessments (where present).


To explore differences in invertebrate densities observed during manta tows and RBts amongst surveys and sites, density data within each station were ln(x+1) transformed to reduce heterogeneity of variances and analysed by two way ANOVA at P = 0.05, using Statistica 7. Data was analysed on an individual species level except for gastropods, which were pooled at a genus level. Tukey-Kramer post-hoc pairwise tests were used to identify specific differences between factors at P = 0.05. Where transformed data failed Cochran's test for homogeneity of variances (P < 0.05), an increased level of significance of P = 0.025 was used.

Results

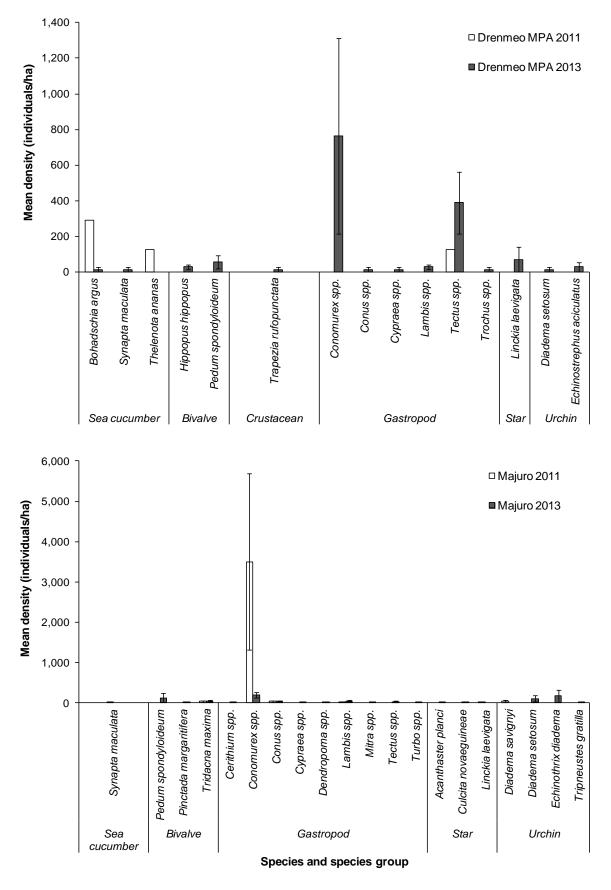
Manta tow

In general, densities of invertebrates observed during manta tows were low during all surveys, with only *H. atra* observed in densities greater than 150 individuals/ha (Figure 45). The following differences were observed amongst surveys:

- Densities of the sea cucumber *Thelenota anax* at the Majuro site appeared significantly lower in the 2013 survey than in 2011, decreasing from 122±32.79 to 9.72±4.90 (P < 0.001)
- Densities of the giant clam *Tridacna maxima* at the Laura site appeared significantly lower in 2013 relative to the PROCFish surveys of the region in 2007, decreasing from 25.35 ± 11.29 to 0.46 ± 0.46 (P = 0.015)
- Densities of the giant clam *Tridacna squamosa* at the Laura site appeared significantly lower in both 2011 and 2013 relative to the PROCFish surveys in 2007, decreasing from 2.31 ± 0.89 to zero in both 2011 and 2013 (P = 0.015)

Figure 45 Overall mean density of invertebrate species (± SE) observed during manta tows at a) Ajeltake (top), Laura (middle) and Majuro stations, 2007, 2011 and 2013.

Reef-benthos transects


Invertebrate diversity at RBt stations was higher in 2013 than 2011 for all monitoring sites (Table 25). In terms of mean densities, the following differences were observed amongst surveys:

- Densities of the sea cucumber *Bohadschia argus* at the Drenmeo MPA site appeared significantly lower in the 2013 survey than in 2011, decreasing from 291.67 to 13.89±13.89 (P < 0.001)
- Densities of the sea cucumber *Holothuria atra* were significantly higher within the Woja MPA site than all other sites (P < 0.001)
- Densities of members of the gastropod genus *Turbo* were significantly higher within the Woja MPA site than the Laura site in both 2011 and 2013 ($P \le 0.035$)

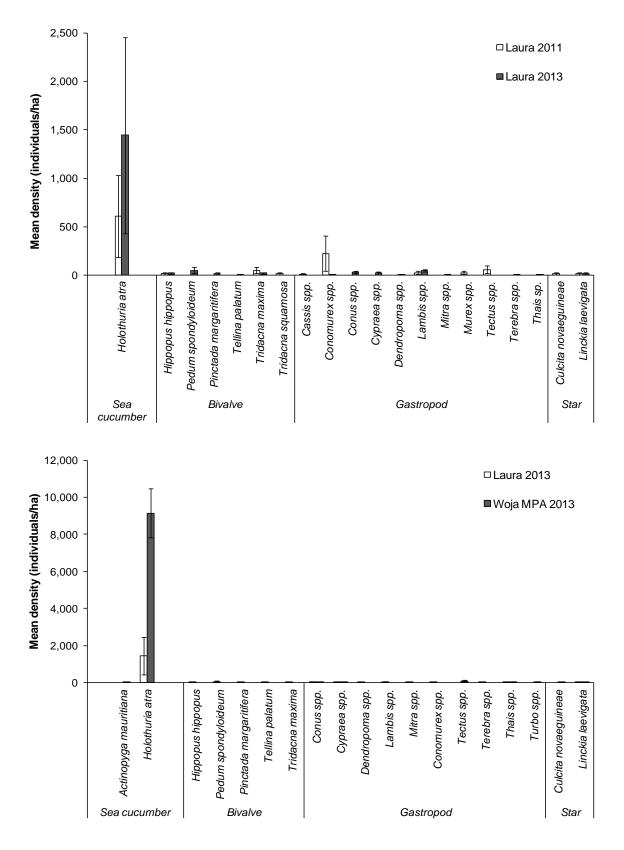

While densities of *Conomurex luhuanus* appeared lower at the Majuro and Drenmeo MPA sites in 2013 relative to 2011 (Figure 46), these were not significantly different at P = 0.05.

Table 25	Total number of genera and species, and diversity of invertebrates observed dur	ring							
	reef-benthos transects at the Drenmeo MPA, Majuro, Laura and Woja M	IPA							
	monitoring sites, 2011 and 2013.								

Parameter	Drenmeo MPA		Majuro		La	ura	Woja MPA		
rarameter	2011	2013	2011	2013	2011	2013	2011	2013	
No. stations completed	1	3	4	6	5	6	0	3	
No. of genera	3	14	7	17	10	15	-	9	
No. of species	3	15	7	23	11	18	-	11	
Diversity	3.0	5.0	1.8	3.8	2.2	3.0	-	3.7	

Figure 46 Overall mean density of invertebrate species (± SE) observed during reef-benthos transects at Drenmeo MPA (top) and Majuro monitoring stations, 2011 and 2013.

Species and species group

Figure 47 Overall mean density of invertebrate species (± SE) observed during reef-benthos transects at Laura stations, 2011 and 2013 (top), and Laura and Woja MPA stations, 2013.

7. Creel Surveys

Methods

Creel surveys at Majuro Atoll focused on commercial spear and bottom (handline) fishers. The creel surveys had the following objectives:

- 1) Document fisher demographics, behavior (e.g. locations fished, distances travelled);
- 2) Provide a 'snapshot' of species composition of each fishery;
- 3) Document catch (including length and weight of all individuals caught) and catch-per-uniteffort for monitoring purposes.

Due to the lack of a centralized landing point or central market, fishers were contacted by telephone to determine when they were going fishing and arrange a suitable meeting time and place to conduct the surveys.

During the survey the lead fisher was asked questions relating to the fishing trip, including the number of fishers, fishing methods used, locations fished, distance travelled, and costs involved (Figure 48). Their historical fishing patterns, and perceptions of the state of resources, were also documented. Perceptions were documented once only for each lead fisher, regardless of how many times that fisher was surveyed. All finfish caught were identified to species, measured to the nearest mm and weighed to the nearest 10 g unless damaged. Shells were measured to the nearest mm, and octopus measured to the nearest mm and weighed the nearest 10 g, following methods of Pakoa et al. (2014). A copy of the survey form used in the creel surveys is included as Appendix 6.

Data analysis

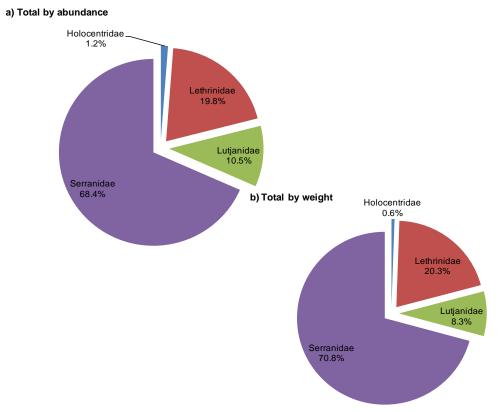
Summary statistics, including mean number of fishers, mean trip duration, mean catch (individual fish and kg) were compiled for each fishing method. Analyses of catch were performed on both taxonomic and functional group levels, with functional groups consistent with those used in the D-UVC surveys (Chapter 4). Where weight data were not recorded (i.e. when the fish was damaged), location-specific length-weight relationships were used to estimate weight. In case where no suitable location-specific length-weight relationship could be established, length-weight relationships were taken from published records in Fishbase (Froese and Pauly 2013). Length-frequency plots were established for key target species and were compared against lengths-atmaturity (where known) to estimate the percentage of immature individuals in the catch. Catch-per-unit effort was calculated for each fishing method, based on number of fish or weight of fish caught per fisher per hour. The number of surveys required to detect a change in CPUE by abundance at a level of precision of 0.2 was calculated for each fishing method using the formula:

$$n = (SD / (P*avg))^2$$

where n = number of replicates required, SD = standard deviation, P = level of precision, and avg = average CPUE of each fishing method.

Figure 48MelbaWhite of the MarshallIslandsMarineResourcesAuthorityinterviewing a handline fisher

Figure 49 Lyla Lemari of the Marshall Islands Marine Resources Authority weighing individuals during a bottom fishing survey.


Results

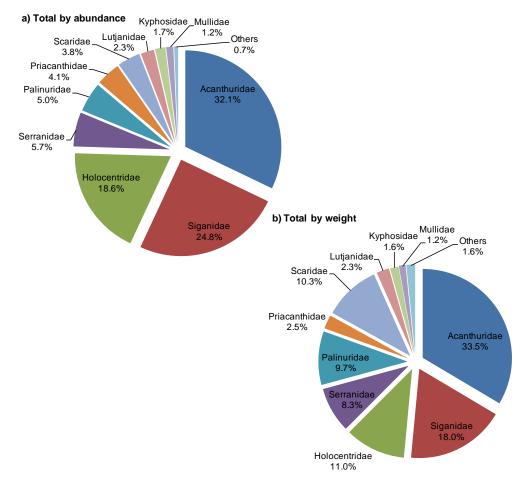
A total of 13 creel surveys were completed, with 1,745 individual fish belonging to 72 species and 14 families identified, measured and weighed. All fishers surveyed were male.

Bottom fishing

Five surveys where bottom fishing was the main fishing activity were completed. On average, bottom fishing trips involved 3.4 ± 0.2 fishers and lasted on average 6.8 ± 0.5 hours (Table 26). The average catch per trip was 29.18 ± 4.68 kg, or 51.2 ± 7.9 individual fish. CPUE was 2.24 ± 0.34 fish/fisher/hour, or 1.27 ± 0.19 kg/fisher/hour (Table 26). Bottom fishing took place mainly in the main pass near Irooj Islet, around the back and patch reefs near Rongrong Islet and along the back reefs of Woja.

The catch was dominated by macro-carnivores/piscivores of the families Serranidae, Lethrinidae and Lutjanidae (Figure 50; Appendix 7). A total of 247 individual fishes from twenty species were observed in the bottom fishing catch (Appendix 7), the most common of which were *Epinephelus polyphekadion* (representing 51% of total catch by number and 47% of the total catch by weight), *Epinephelus maculatus* (9% of total catch by number and 14% of the total catch by weight), *Lutjanus gibbus* (9% of total catch by number and 5% of the total catch by weight) and *Lethrinus erythropterus* (6% of the total catch by both number and weight) (Appendix 7).

Figure 50 Percent contribution by a) total number and b) total weight of families caught by bottom fishing, Majuro Atoll, August 2013.


Table 26Data summary of creel surveys conducted at Majuro Atoll, 2013.

Predominant fishing method used	Handline	Spear
No. surveys	5	8
Total number of fishers surveyed	17	41
Mean time spent fishing (hrs)	6.8±0.5	4.4±0.5
Mean no. of fishers per trip	3.4±0.2	5.1±0.6
Average catch (number of fish) per trip	51.2±7.9	186.1.5±31.2
Average catch (kg) per trip	29.18±4.68	55.9±10.0
Average CPUE by abundance (no. fish / fisher / hour)	2.24±0.34	8.7±1.1
Average CPUE by weight (kg / fisher / hour)	1.27±0.19	2.59±0.37
No. of landings needed to survey to detect change in CPUE by abundance at precision of 0.2 (to 1 sig. fig.)	3	3
No. of landings needed to survey to detect change in CPUE by weight at precision of 0.2 (to 1 sig. fig.)	3	4

Spearfishing

Eight surveys where spearfishing was the main fishing activity were completed. With the exception of a single trip, all spear-fishing trips were conducted at night. On average, spearfishing trips involved 5.1 ± 0.6 fishers, with a mean duration of 4.4 ± 0.5 hours (Table 26). The average catch per trip was 55.86 ± 9.99 kg, or 186.1 ± 31.2 individual fish. Catch-per-unit effort (CPUE) was 8.73 ± 1.11 fish/fisher/hour, or 2.59 ± 0.37 kg/fisher/hour (Table 26). As with bottom fishing, spearfishing trips mainly took place around the back and patch reefs of the north-west of the atoll near Rongrong Islet, the main pass near Irooj Islet and along the back reefs of Woja and Ajeltake.

Fourteen families were observed in the spearfishing catch, with members of the Acanthuridae, Siganidae, Holocentridae and Serranidae dominating the total catch by both abundance and weight (Figure 51; Appendix 7). A total of 1,498 individual fishes from 62 species were observed in the spearfishing catch (Appendix 7). The most common finfish species caught were *Siganus argenteus* (representing 24% of total catch by abundance and 17% by weight), *Acanthurus lineatus* (18% of total catch by abundance and 11% by weight), *Naso lituratus* (7% of the total catch by both abundance and weight) and *Myripristis berndti* (5% of total catch by abundance and 3% by weight) (Appendix 7).

Figure 51 Percent contribution by a) total number and b) total weight of families caught by spearfishing, Majuro Atoll, August 2013.

Length frequencies

Length frequency plots for eight of the most commonly observed species for bottom fishing and spearfishing catches are presented as Figure 53. For *Epinephelus polyphekadion* and *Lutjanus gibbus*, few differences were observed in size of individuals caught by the different fishing methods (Figure 53). Approximately 73% of the *E. polyphekadion* caught by bottom fishing and 81% caught by spearfishing were under the median length at maturity of 352 mm proposed by Rhodes et al. (2011) for populations in Pohnpei. Similarly, 53% of the *L. gibbus* caught by bottom fishing, and 52% caught by spearfishing, were under the regional estimated median length of maturity of 25 cm FL (SPC unpublished data) (Figure 53). All *N. lituratus* and were larger than the median lengths of maturity estimated for populations in Micronesia (Taylor et al. 2014).

Fisher Perceptions

Fisher perceptions were collected during six surveys². The majority of fishers surveyed indicated that they had seen changes in the fishery in the last few years, with 67% of all respondents stating they considered their catches had decreased compared to five years ago, and 83% of all respondents stating the sizes of fish had decrease compared to five years ago (Figure 52).

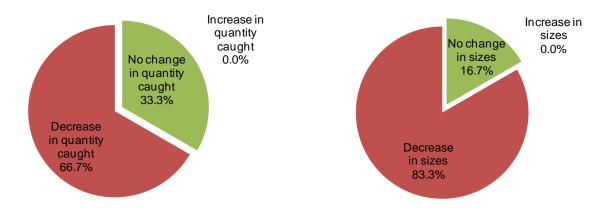
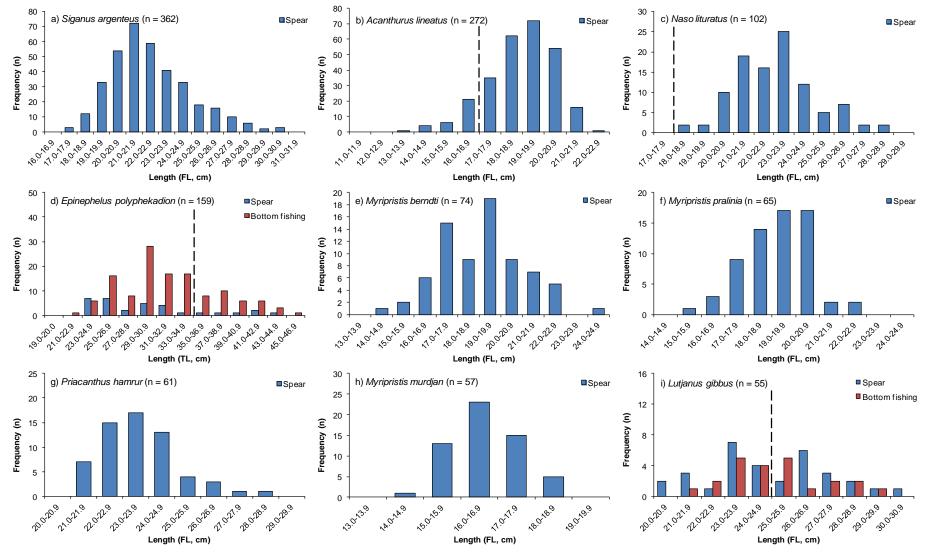



Figure 52Responses of lead fishers to questions on perceptions on whether catch quantities
(left) or fish sizes (right) have changed over the last five years.

² Perception data were only collected once for each lead fisher, irrespective of how many times they were surveyed.

Figure 53 Length frequency of most commonly observed finfish species during creel surveys at Majuro Atoll, 2013.Dashed lines indicate estimated lengths at 50% maturity from: c) Taylor et al. (2014); d) Rhodes et al. (2011); i) SPC unpublished data.

8. Biological Monitoring of Selected Reef Fish Species

Methods

Sample collection

Biological monitoring of key reef fish species at Majuro Atoll focused on two commercially harvested species: humpback red snapper (*Lutjanus gibbus*) and orangespine unicornfish (*Naso lituratus*) and two 'control' species: redfin butterflyfish (*Chaetodon lunulatus*) and striated surgeonfish (*Ctenochaetus striatus*), which were included to control for the effects of fishing. Fish were collected from commercial fishers during creel surveys or by fisheries-independent spearfishing. The fork length (FL) and total length (TL) were measured to the nearest millimetre for each fish collected, unless damaged. Each individual was weighed to the nearest 10 g unless damaged or eviscerated. Sex was determined from a macroscopic examination of the gonads. Sagittal otoliths (hereafter referred to as otoliths) were removed from all specimens for ageing purposes, cleaned, dried and stored in plastic vials until processing in the laboratory.

Sample processing

A single otolith from each fish was weighed to the nearest 0.001g using an electronic balance, unless broken. Otoliths were used to estimate fish age. Otoliths from *C. striatus*, *L. gibbus* and *N. lituratus* were processed using standard sectioning protocols. Here, a single otolith from each individual was embedded in resin and sectioned on the transverse axis using a slow-speed diamond edge saw. Sections were approximately 300μ m thick, and care was taken to ensure the primordium of the otolith was included in the sections. Sections were cleaned, dried and mounted onto clear glass microscope slides under glass coverslips using resin.

Otoliths from *C. lunulatus* were prepared using the single ground transverse sectioning method, following the method described in Krusic-Golub and Robertson (2014). Here, a single otolith from each fish is fixed on the edge of a slide using thermoplastic mounting media (CrystalBond), with the anterior of the otolith hanging over the edge of the slide, and the primordium just inside the slide's edge. The otolith was then ground down to the edge of the slide using 400 and 800 grit wet and dry paper. The slide was then reheated and the otolith removed and placed on a separate slide with CrystalBond, with the ground surface facing down. Once cooled, the otolith was ground horizontally to the grinding surface using varying grades (1500, 1200, 800 and 400 grit) of wet and dry paper and polished with lapping film.

Mounted otolith sections were examined under a stereo microscope with reflected light. Opaque increments observed in the otolith were assumed to be annuli for the seven species examined. Supportive evidence for annual periodicity in opaque increment formation in otoliths has been demonstrated in the majority of cases for tropical reef fish, including both *Lutjanus gibbus* (Nanami et al. 2010) and *Naso lituratus* (Taylor et al. 2014) and many other closely related species to those examined here (e.g. Choat and Axe 1996, Newman et al. 2000, Pilling et al. 2000). The annuli count was accepted as the final age of the individual, with no adjustment made of birth date or date of capture.

Data analysis

Length and age frequency distributions were constructed to examine population structures of each species. To examine growth, the von Bertalanffy growth function (VBGF) was fitted by nonlinear least-squares regression of length (FL or TL) on age. The form of the VBGF used to model length-at-age data was as follows:

$$L_{\rm t} = L_{\infty} [1 - {\rm e}^{-K(t-t_0)}]$$

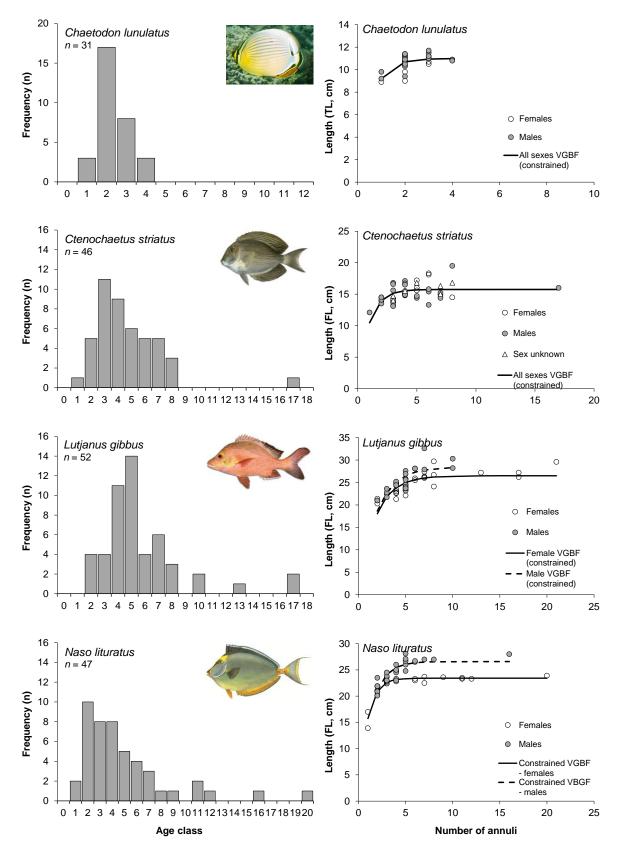
where L_t is the length of fish at age t, L_{∞} is the hypothetical asymptotic length, K is the growth coefficient or rate at which L_{∞} is approached, and t_0 is the hypothetical age at which fish would have a length of zero. Due to a lack of smaller, younger fish in the samples, t_0 was constrained to zero. Sex-specific VBGFs were initially fitted for each species. Preliminary results indicated little significant difference in growth of males and females of *C. lunulatus* and *C. striatus*; hence a combined growth curve was fitted for males and females of each of these species.

Age-based catch curves (Ricker 1975) were used to estimate the instantaneous rate of total mortality (*Z*) for each species with samples sizes ≥ 40 . Catch curves were generated by fitting a linear regression to the natural log-transformed number of fish in each age class against fish age. The slope of this regression is an estimate of the rate of annual mortality. Regressions were fitted from the first modal age class, presumed to be the first age class fully selected by the sampling gear, to the oldest age class that was preceded by no more than two consecutive zero frequencies. Instantaneous natural mortality rates (M) were derived using the general regression equation of Hoenig (1983) for fish:

$$\ln(M) = 1.46 - 1.01 \times \ln t_{max}$$

where t*max* is the maximum known age, in years. Fishing mortality (F) was calculated from the equation F = Z - M. The harvest strategy of $F_{opt} = 0.5M$ (Walters 2000) was adopted in this study as the optimum fishing mortality rate for sustainable exploitation (sensu Newman and Dunk 2002).

Results


Thirty-seven redfin butterflyfish (*C. lunulatus*) were collected by fisheries-independent spearfishing at Majuro Atoll, with 31 of these aged to date. Estimated ages ranged from 1–4 years, with a modal age of 2 years (Figure 54; Table 27). Growth was similar amongst sexes, and was rapid early in life, consistent with descriptions of growth elsewhere across the species range (Figure 54) (Berumen et al. 2012). Age structures were relatively truncated compared to those of Berumen et al. (2012), who estimated a maximum age of 17+ years for this species on the Great Barrier Reef, Australia. Such differences likely reflect the low samples sizes of the present study. Due to low sample sizes, no mortality estimates were calculated for this species. Accordingly, greater sampling of this species at Majuro Atoll should be undertaken.

Forty-eight striated surgeonfish (*C. striatus*) were collected by fisheries-independent spearfishing at Majuro Atoll, with 46 of these aged to date. Estimated ages ranged from 1-17 years, with a modal age of 3 years (Figure 54; Table 27). Little difference in growth was evident among sexes

(Figure 54). As with *C. lunulatus*, age structures were relatively truncated compared to those from previous studies (e.g. Choat and Axe 1996, Trip et al. 2008), which again may reflect the low samples sizes of the present study. Accordingly, further sampling of this species at Majuro Atoll should be undertaken.

Fifty-five humpback red snapper (*L. gibbus*) were collected from the commercial catch from Majuro Atoll, with 52 of these having been aged to date. Estimated ages for this species at Majuro ranged from 2–21 years, with a modal age of 5 years (Figure 54; Table 27). Growth differed markedly among sexes, with males reaching a greater length at a given age than females (Figure 54). Total (Z) and natural (M) rates of mortality were estimated as 0.288 and 0.199, respectively (Table 28). Fishing mortality was estimated as 0.090, slightly under the recommended maximum fishing mortality rate of 0.099 (Table 28).

Fifty-five orangespine unicornfish (*N. lituratus*) were collected from the spearfishing catch from Majuro Atoll, with 47 of these aged to date. Estimated ages ranged from 1-20 years, with a modal age of 2 years (Figure 54; Table 27). As with *L. gibbus*, growth differed among sexes, with males reaching a greater length at a given age than females (Figure 54). Total (Z) and natural (M) rates of mortality were estimated as 0.245 and 0.209, respectively (Table 28). Fishing mortality was estimated as 0.036, under the recommended optimal fishing mortality rate of 0.104 (Table 28).

Figure 54 Age frequency distributions (left) and von Bertalanffy growth function curves (right) for the four monitored finfish species at Majuro Atoll, July–August 2013.

		, , , ,				
Species	No. collected	No. aged to date	Size range (cm)	Age range	L_{∞} (males / females) ³	K (males / females)
Chaetodon lunulatus	37	30	8.9–11.7 (TL)	1–4	10.99	1.82
Ctenochaetus striatus	48	46	12.1–19.5 (FL)	1–17	15.75	1.09
Lutjanus gibbus	60	52	20.3–32.6 (FL)	2–21	28.47 / 26.50	0.53 / 0.57
Naso lituratus	55	52	13.9–28.1 (FL)	1–20	26.59 / 23.43	0.79 / 1.11

Table 27Demographic parameter estimates for selected reef fish species from Majuro Atoll, Marshall Islands, July–August 2013. VBGF parameters
are based on constrained ($t_0=0$) estimates.

Table 28Estimates of mortality for exploited species using catch curve and Hoenig (1983) estimators. Maximum ages used in the equation of Hoenig
(1983) and age ranges used for total mortality (Z) calculations are indicated. Green faces indicate F < 0.5M.</th>

Species	Maximum age (yr)	Age range	Catch curve (Z)	Hoenig (1983)	Fishing mortality (F)	Fopt
Lutjanus gibbus	21 (this study)	5–13	0.289	0.199	0.090	0.099 💽
Naso lituratus	20 (this study)	3–12	0.265	0.209	0.056	0.104 🕐

³ Figures for *Chaetodon lunulatus* and *Ctenochaetus striatus* are based on data for males and females combined.

9. Discussion and Recommendations for Improving the Resilience of Coastal Fisheries of Majuro Atoll

Monitoring potential effects of chronic disturbances such as climate change is a challenging prospect that requires the generation of an extensive time series of data and regional cooperation and comparison amongst standardised datasets and indicators. Nevertheless, several key management recommendations, outlined below, are prescribed from the current study that will help improve the resilience of the coastal fisheries of Majuro Atoll to both long-term (e.g. climate change) and short-term (e.g. overfishing) stressors. Many of the recommendations proposed here will also be of relevance to other RMI islands. This list is by no means intended to be exhaustive; rather it provides salient information on the key recommendations.

- 1. Expand the network of locally managed Marine Protected Areas. To maintain biodiversity, ecosystem functioning and resilience, and confer benefits to adjacent fisheries, in accordance with the objectives of the Micronesia Challenge, it is highly recommended that the reserve network within Majuro Atoll be expanded. Combined, no-take areas make up < 2% of the reef area of Majuro Atoll. The expansion of the MPA network in Majuro Atoll could be conducted in two ways: 1) creation of new protected areas, and/or 2) expanding the existing protected areas. That both the Drenmeo and Woja MPAs showed little differences in finfish density or biomass relative comparably-situated areas that are open to fishing suggests that the current design is ineffective for protecting fish populations. Ultimately, the design of the MPA network should take into account conservation targets, socio-ecological and economic interests, and the home ranges of species the MPA is intended to protect (Green et al. 2013). Green et al. (2013) provide a guide to designing marine protected areas to achieve conservation objectives in tropical ecosystems. As a general rule of thumb, they recommend the following:
 - that MPAs represent 20–40% of the available area of each habitat;
 - that protected areas are established across widely separated areas, to minimise the risk that all areas will be adversely impacted by the same disturbance; and
 - that MPAs be twice the size of the minimum home range of the species they are implemented to protect. For example, most species of browsing or scraping herbivores, considered to be key for reducing overgrowth of coral by macroalgae (and thus preventing coral-algae regime shifts) have home ranges in the order of 500 m to 2 km (Green et al. 2013).
- 2. Place restrictions on destructive or highly efficient fishing practices, in particular nighttime spearfishing. While coral communities in the northern regions of Majuro Atoll are relatively healthy, considerable overgrowth of corals by macroalgae is apparent along the backreef of the more densely populated south of the Atoll, spanning from Laura in the west to Delap in the east (encompassing the Laura and Ajeltake broad-scale habitat assessment sites). This finding is suggestive of a widespread historical coral-algae regime shift in this region, likely resulting from heavy fishing pressure on herbivorous fishes, higher levels of eutrophication and relatively poor tidal flushing. While few browsing herbivores were observed during the inwater assessments, the group comprised a significant proportion of the spearfishing catch

observed during the creel surveys. In addition to expanding the MPA network, any possible methods to reduce fishing effort on browsing and scraping herbivorous fishes should be undertaken to minimise the risk of a widespread coral-algae regime shift in the Atoll. In particular, moves to restrict or prohibit the destructive and highly efficient fishing practices that target these groups, in particular night-time spearfishing, should be put in place. In conjunction, incentives should be offered to move fishing effort away from reef resources and onto small pelagics.

- 3. Assess and monitor grouper catches. The relatively large numbers of serranids, in particular *Epinephelus polyphekadion*, observed during creels surveys is cause for concern and needs greater investigation. The over-dominance of *E. polyphekadion* and other grouper species in the bottom fishing catch suggests that fishers may be targeting a spawning aggregation. Both *E. polyphekadion* and *E. fuscoguttatus* are listed as 'Near Threatened' on the IUCN Red list due to their susceptibility to over-fishing, particularly of spawning aggregations. Should a spawning aggregation be identified management measures, such as seasonal closures, need to be put in place to ensure its protection. Many Pacific Island countries and territories have implemented or are in the process of implementing seasonal restrictions of the harvest of groupers. For example, in Palau it is illegal to fish for, sell, receive, export, process or buy any *E. fuscoguttatus*, *E. polyphekadion, Plectropomus areolatus, P. laevis* or *P. leopardus*, from April 1 to October 1 regardless of where such species may have originated. Such restrictions could be embedded within a larger coastal fisheries management plan or set of domestic fishing regulations (see Item 6 below).
- 4. **Protect sharks and other ecologically-significant species.** In addition to reducing fishing pressure on herbivorous fish populations, protection should be offered to other ecologically significant and species, in particular sharks and the humphead wrasse, *Cheilinus undulatus*. Sharks are apex predators that play a key role in maintaining healthy reef ecosystems. Few sharks were observed during the surveys. Globally, reef shark populations are plummeting and at risk of ecological extinction over the coming decades as a result of fishing, primarily for the shark fin trade. Similarly, the humphead wrasse is listed as Endangered on the IUCN Red List in recognition of its slow population turnover (Choat et al. 2006) and vulnerability to fishing. To conserve these iconic species we recommend that a regional moratorium be placed on shark fishing, particularly for the fin trade, and the sale of *C. undulatus*.
- 5. **Maintain the national closure of sea cucumber fisheries.** A total ban was placed on the export of sea cucumbers in 2011 to allow stocks to recover until new sea cucumber fishery regulations could be developed. Due to low observed densities, sea cucumber fisheries within Majuro Atoll should remain closed to allow recovery of stocks and the ecological functioning they perform. Similarly, there is no potential for commercial fishing of trochus at this time, and stocks are in need of on-going protection to build until recommended minimum harvest densities of 500–600 individuals/ha are achieved.

- 6. **Develop and implement coastal fisheries management plan / regulations.** Finfish fishing in Majuro Atoll and elsewhere in the Marshall Islands is at present highly unregulated, with little rules or restrictions on harvests. To ensure fish for futire generations is strongly recommended that a coastal fisheries management plan / regulations be developed that addresses various fishing activities (e.g. fishing gears and practices), restrictions on species' harvests (e.g. size limits, seasonal closures during spawning season), export of coastal resources and community management practices.
- 7. Strengthen stakeholder awareness programs and exchange of information on coastal fisheries, the marine environment and climate change. Further to maintaining the existing and establishing additional no-take areas, education or awareness programs should be offered to the general public of Majuro Atoll regarding the benefits of marine reserves or herbivorous fish stocks, lengths at maturity etc. A better-informed public would assist in the co-management of coastal fisheries resources.

Recommendations for Future Monitoring

To be able to assess the success of management interventions and well as monitor the status and trends in productivity of the region's coastal fisheries and supporting habitats in the face of climate change and other anthropogenic stressors, continual monitoring is needed. Finfish communities in particular typically show high inter-annual variation (e.g. Sweatman et al. 2008), meaning a long time-series of data is required to detect prevailing trends. In addition to continuing the monitoring program established here, the following recommendations are proposed for future monitoring events:

- It is highly recommended that a 'core' coastal fisheries monitoring team be established within MIMRA, as well as other relevant organizations (e.g. College of the Marshall Islands, Marshall Islands Conservation Society and Republic of the Marshall Islands Environmental Protection Authority). Developing a core team of monitoring staff will help maintain and build monitoring capacity within the team, and help reduce surveyor biases that may otherwise preclude the detection of 'real' trends.
- Despite several apparent differences in benthic habitat composition and finfish densities among surveys, few statistically significant differences were observed. To improve the power of the benthic habitat and finfish surveys to detect change, and thus reduce the potential for type II errors (i.e. failing to detect difference where differences exist) it is strongly recommended that additional benthic habitat and finfish transects (≥ 2) be established at each site, where space permits. Unfortunately, while this issue was anticipated during the fieldwork, further additional transects (that is, in addition to the 14 added in 2013 from the 2011 survey) could not be completed due to time constraints. These additional transects should be established with immediate effect so as to allow for reliable detection of future changes in benthic habitat and finfish assemblages.

- It is recommended that permanent stakes be established at the beginning and end of the finfish and benthic habitat assessment transects. This is to ensure the same exact transect path is assessed each time, reducing variability associated with minor variations in transect positioning.
- In addition to continuing the monitoring methodologies presented here, it is highly recommended that ocean acidification indices, sedimentation rates and nutrient input (or suitable proxies such as sedimentary oxygen consumption (Ford et al. 2014)) within the study region be monitored.
- Furthermore, to ensure that results of future finfish surveys are not biased by differences in observer skill or experience should additional staff be trained, it is recommended that non-observer based techniques, such as videography, be investigated for use in conjunction with the D-UVC surveys.
- Monitoring of additional pinnacle reefs within the lagoon of the atoll is highly recommended, however due to the small sizes of many of these reefs modified designs of the present survey methods or alternate monitoring approaches may be required for these habitats (e.g. smaller transects, stationary points counts for monitoring finfish).
- It is advised that the logger housing be shifted to the outer reef near the Majuro and Drenmeo MPA monitoring sites. Here the topography is less steep and better suited to the long-term deployment of the logger housing.
- The creel surveys conducted at Majuro Atoll represent a single 'snapshot' of fisher behavior, fishing patterns and catches at the time of survey. Further creel surveys are recommended to explore temporal variations in these parameters. Creel surveys could be initially conducted at least every 3-6 months, and scaled back should little temporal variation emerge.
- It is highly recommended that the biological monitoring program be expanded, through both an increase in the sample sizes of species collected here and inclusion of other exploited species in this component. Monitoring of the age structure of exploited species is likely to be a more sensitive indicator of the effects of exploitation than monitoring of catch and effortand length frequency data in isolation, due to the likelihood of catch rates for reef-associated species being affected by hyperstability (whereby stable CPUE may persist long after declines in overall population abundance have occurred, due to their high habitat dependencies and aggregative nature) and density-dependence issues (Newman and Dunk 2000).

10. References

- Bell, J.D., Johnson, J.E., Ganachaud, A.S., Gehrke, P.C., Hobday, A.J., Hoegh-Guldberg, O., Le Borgne, R., Lehodey, P., Lough, J.M., Pickering, T., Pratchett, M.S. and Waycott, M. (2011). Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change: Summary for Pacific Island Countries and Territories. Secretariat of the Pacific Community, Noumea, New Caledonia, 386 p.
- Bellwood, D. R., Hughes, T. P. Folke, C. and Nystrom, M. (2004). Confronting the coral reef crisis. Nature 429: 827–833.
- Berumen, M.L., Trip, E.D.L., Pratchett, M.S. and Choat, J.H. (2012). Differences in demographic traits of four butterflyfish species between two reefs of the Great Barrier Reef separated by 1,200 km. *Coral Reefs* 31: 169–177.
- Canadian High Commission. (2001). Canada Fund Regional Report: Palau, Nauru, Marshall Islands, Federated States of Micronesia. General end of year report 2000/2001. Canadian High Commission, Australia. 14 p.
- Chapman, L. (2004a). Development options and constraints including training needs and infrastructure requirements within the tuna fishing industry and support services in the Republic of the Marshall Islands: 27 October to 8 November 2003. Field Report No. 23. Secretariat of the Pacific Community, Noumea, New Caledonia. 48 p.
- Chapman, L. (2004b). Nearshore domestic fisheries development in Pacific Island countries and territories. Information Paper No. 8. 4th Heads of Fisheries Meeting, 30 August – 3 September 2004, Noumea, New Caledonia. Secretariat of the Pacific Community, Noumea, New Caledonia.
- Choat, J.H. and Axe, L.M. (1996). Growth and longevity in acanthurid fishes; an analysis of otolith increments. *Marine Ecology Progress Series* 134: 15–26.
- Choat, J. H., Davies, C. R., Ackerman, J. L. and Mapstone, B. D. (2006). Age structure and growth in a large teleost, Cheilinus undulatus, with a review of size distribution in labrid fishes. *Marine Ecology Progress Series* 318: 237–246.
- Clua, E., Legendre, P., Vigliola, L., Magron, F., Kulbicki, M., Sarramegna, S., Labrosse, P. and Galzin, R. (2006). Medium scale approach (MSA) for improved assessment of coral reef fish habitat. *Journal of Experimental Marine Biology and Ecology* 333: 219–230.
- Froese, R. and Pauly, D. (2013) (eds). FishBase. www.fishbase.org
- Gillet, R. (2009). *Fisheries in the Economics of the Pacific Island Countries and Territories*. Phillipines: Asian Development Bank.

- Green, A. (1996) Spatial, temporal and ontogenetic patterns of habitat use by coral reef fishes (Family Labridae). *Marine Ecology Progress Series* 133: 1–11.
- Green, A. L. and Bellwood, D. R. (2009). Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience - a practical guide for coral reef managers in the Asia Pacific region. IUCN working group on Climate Change and Coral Reefs. IUNC, Gland, Switzerland. 70 p.
- Green, A., White, A. And Kilarski, S. (eds.) (2013). Designing marine protected area networks to achieve fisheries, biodiversity and climate change objectives in tropical ecosystems: a practitioner guide. The Nature Conservancy and the USAID Coral Triangle Support Partnership, Cebu City, Philippines. viii + 35 p.
- Guinotte, J.M., Buddemeier, R.W. and Kleypas, J.A. (2003). Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. *Coral Reefs* 22: 551–558.
- Kurihara, H. (2008). Effects of CO₂-driven ocean acidification on the early development stages of invertebrates. *Marine Ecology Progress Series* 373: 275–284.
- Langdon, C and Atkinson, M. (2005). Effect of elevated pCO₂ on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research 110: C09S07.
- Marshall Islands (2011) from Wikipedia: <u>http://en.wikipedia.org/wiki/Marshall_Islands;</u> last accessed 17 Novemner 2011.
- Mimura, N. (1999). Vulnerability of island countries in the South Pacific to sea level rise and climate change. *Climate Research* 12:137–143.
- Moore, B, Sapatu, M., Yeeting, B. Pakoa, K., Magron, F., Bertram, I and Chapman, L. (2012). Climate change baseline assessment: Majuro Atoll, Republic of the Marshalls Islands. Secretariat of the Pacific Community, Noumea, New Caledonia. 109 p.
- Munday, P.L., Crawley, N.E. and Nilsson, G.E. (2009a). Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. *Marine Ecology Progress Series* 388: 235-242.
- Munday, P.L., Dixson, D.L., Donelson, J.M., Jones, G.P., Pratchett, M.S., Devitsina, G.V. and Doving, K.B. (2009b). Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. *Proceedings of the National Academy of Sciences* 106: 1848–1852.
- PCCSP (2011). Climate change in the Pacific; Scientific Assessments and New Research. Volume 2, Country Reports, Chapter 7, Marshall Islands.

- Pinca, S., Berger, M. and Jacobson, D. (2002). The state of coral reef ecosystems of the Marshall Islands. pp 373–386. In: The state of the global coral reef ecosystems of the US and Pacific freely associated states. NOAA, USA.
- Pinca, S., Tardy, E., Awira, R., Kronen, M., Pakoa, K., Boblin, P., Friedman, K., Vunisea, A., Chapman, L., Lasi, F. and Magron, F. (2009). Marshall Islands country report: profiles and results from survey work at Likiep, Ailuk, Arno and Laura (August and September 2007). Secretariat of the Pacific Community, Noumea, New Caledonia. 337 p.
- Pittman, S.J. and Brown, K.A. (2011). Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLOS ONE 6: e20583.
- Pratchett, M. (2005). Dietary overlap among coral-feeding butterflyfishes (Chaetodontodae) at Lizard Island, northern Great Barrier Reef. *Marine Biology* 148(2): 373–382.
- Sisifa, A. (2002). Strategy for national agricultural and fisheries development: horizon 2010 for the Republic of the Marshall Islands (Draft). Government of the Republic of the Marshall Islands, Majuro, Marshall Islands and Food and Agricultural Organization of the United Nations, Rome. 18 p.
- Tardy, E., Pakoa, K. and Friedman, K. (2009). Assessment of the trochus resources of Pohnpei Island in June 2008 and recommendations for management. Secretariat of the Pacific Community, Noumea, New Caledonia.
- Trip, E., Choat, J.H., Wilson, D.T. and Robertson, D.R. (2008). Inter-oceanic analysis of demographic variation in a widely distributed Indo-Pacific coral reef fish. *Marine Ecology Progress Series* 373: 97–109.
- Turner, B. (ed.). (2008). The statesman's yearbook 2008 The politics, culture and economics of the world. MacMillan Publishers Limited, USA. pp. 843–845.

Appendix 1 Finfish distance-sampling underwater visual census (D-UVC) survey form

F	ish form UVC	PAGE /					
	Site /20 Lat. °						
	_/20 =at _ _	·III •	.0119.1		[7]		
ST	SCIENTIFIC NAME	NBER	LGT	D1	D2	COMMENTS	
				I			
				1			
				1	1		
			<u> </u>				

Appendix 2 Form used to assess habitats supporting finfish

Habitat Form UVC (new)

Campai	gn Site				_ D	iver Transect _			
D _	/ _ /20 _ Lat.	_ ° , _	_ ' Lo	ng. _	_ _	_ ° <u></u> _, <u></u> ' WT	_		
Start time:	: _ : End time: _	_ : _	_ Secchi disc	visibility		m Left Righ	t 🗌		
Primary r	reef: Coastal Lagoon Bad	ck Outer	Seconda	ry Reef:	Coast	al Lagoon Back C	Duter		
none medium strong	current influence influence	entle slope	ng estimate of sl	Floor	ee	Remarks:			
	Quadrat limits	0 10	20 30	40 50	%	Branching : has secondary branching			
	Depth of transect line	(m)				Digitate : no secondary branching Hard coral (dead & live) : Coral attache			
	Slope only: Depth of crest	(m)				with an identifiable shape (otherwine Rubble : any piece or whole coral color	ise it's abiotic)		
	Slope only: Depth of floor	(m)				that is not attached to substrate			
	Line of sight visibility	(m)				Topography (regardless of surface ori 1 : no relief, 2 : low (h<1m), 3: medium	(1 <h<2m)< td=""></h<2m)<>		
	Topography (1-5)				 strong (2<h<3m), (h="" 5:="" exceptional="">3</h<3m),> Complexity (quantity and diversity of here 			
	Complexity (1-5)				cavities): 1: none, 2: low, 3: mediu 5:exceptional	ım, 4: strong,		
1st layer	Hard subst	rate			1	% measured over line of sight visibili	ty		
	Soft subst	rate			100		Topography		
2 nd layer	(1) Ab	iotic			_	Echinostrephus sp. Echinometra sp.	$\cap t \cap$		
	(2) Hard corals (dead &				100				
	Rocky substratum (S					- He			
		Silt				Diadema sp. Heterocentrotus sp.	Complexity		
		Mud					1 : none		
otic		and			22	Gorgonians Gorgonians			
(1) Abiotic	Rub		_		100				
(1)							2 :low		
	Gravels, small boulders (< 30			_			• •		
	Large boulders (<			_		Acanthaster sp. Can			
	Rocks (>				_		3 : medium		
(2a) Hard coral status		Live			_		0.2000		
a) H cora statu	Bleac	hing			100				
© 	Long dead algae cove	ered					4 : strong		
	Encrus	sting				Ophidiasteridae Oreasteridae	683		
lape	Mas	sive							
al sl	Sub-mas	sive				THE AND	5:Exceptional		
1 cor	Dig	itate			100				
laro	Bra	inch				Branching	83、茶		
(2b) Hard coral shape	Fol	iose					Jo Se a		
	Tabu						Depth :		
3 rd layer:		nge				Digitate Branching	<10m : measure it ;		
other	Soft o					atter in the state			
3rd layer:	Macro-algae (soft to to					- >10 m estima			
	Turf (filame						10-15m 15-20m		
ae ae	Calcareous algae (hard to to	Contraction of the second s				Submassive	>20m		
Plant & algae	Encrusting algae (Crustose coral	line)					Crest side :		
-	Seag	rass				Foliose Tabular Massive	Floor=trans		
3rd layer:	0'''				\neg	(in station	ect depth		
							Slope side :		
3rd layer:	Cyanophy	vcae				Encrusting Turf	Crest=trans ect depth		

Appendix 3 Invertebrate survey form

	MAIN RECORD- if found pls return to: BP D5 98848 Noumea Ce																	
	DATE							RECO	ORDEF	२						Pg N	lo	
STATION NAME																		
WPT / WIDTH OF REPLICATE																		
						-		-							-	-		
						-												
													1					
	-					-							7					
			-	· · · · · ·	-		· .											
		-				-			-				· · · · · · · ·		-	-		
	1																	
							-											
																		<u> </u>
													1					-
										1.1					1.			
		C				·	-							<i>v</i>				
		·				-							·		-			
	-					-	-							~				
					· · · · · ·							-						
RELIEF / COMPLEXITY 1-5																		
OCEAN INFLUENCE 1-5																		
DEPTH (M)	1																	
% SOFT SED (M – S – CS)																		
% RUBBLE / BOULDERS																		
% CONSOL RUBBLE / PAVE																		
% CORAL LIVE													· 			_		
% CORAL DEAD																		
SOFT / SPONGE / FUNGIDS	 						11							6				<u> </u>
ALGAE CCA																		
CORALLINE OTHER																		
GRASS							-											
	-					14											1	
	1																	
	1																	
EPIPHYTES 1-5 / SILT 1-5		0								0								
BLEACHING: % of benthos	1						-	-										
				-						-	-							
ENTERED / CHECKED									\geq	/		/						

SPC INVERTEBRATE SURVEYS MAIN RECORD- if found pls return to: BP D5 98848 Noumea Cedex New Caledonia

C!	Station ID	Danliasta	Start	Start	End Latitude	End
Site	Station ID	Replicate	Latitude (N)	Longitude (E)	(N)	Longitude (E)
Ajeltake	Manta_5	1	7.072183	171.182333	7.072083	171.185183
Ajeltake	Manta_5	2	7.072133	171.185817	7.071167	171.188467
Ajeltake	Manta_5	3	7.071150	171.188767	7.070183	171.191583
Ajeltake	Manta_5	4	7.070233	171.191883	7.069650	171.194767
Ajeltake	Manta_5	5	7.069700	171.195350	7.068567	171.197967
Ajeltake	Manta_5	6	7.068267	171.198550	7.066917	171.200933
Ajeltake	Manta_6	1	7.064200	171.210083	7.062500	171.211767
Ajeltake	Manta_6	2	7.062033	171.212433	7.060850	171.215000
Ajeltake	Manta_6	3	7.060500	171.215717	7.059467	171.218650
Ajeltake	Manta_6	4	7.059250	171.218917	7.057933	171.222133
Ajeltake	Manta_6	5	7.057733	171.222850	7.057117	171.225517
Ajeltake	Manta_6	6	7.056783	171.225817	7.056917	171.225417
Ajeltake	Manta_7	1	7.056083	171.237083	7.056350	171.240017
Ajeltake	Manta_7	2	7.056450	171.240433	7.056983	171.243267
Ajeltake	Manta_7	3	7.057217	171.243933	7.058017	171.246750
Ajeltake	Manta_7	4	7.058233	171.247467	7.059417	171.249833
Ajeltake	Manta_7	5	7.059917	171.250450	7.061133	171.253283
Ajeltake	Manta_7	6	7.061283	171.253417	7.062283	171.256117
Ajeltake	Manta_8	1	7.062283	171.259383	7.063917	171.261450
Ajeltake	Manta_8	2	7.064150	171.262483	7.065150	171.265283
Ajeltake	Manta_8	3	7.065367	171.265667	7.066300	171.268383
Ajeltake	Manta_8	4	7.066400	171.268950	7.067033	171.271683
Ajeltake	Manta_8	5	7.067067	171.272217	7.067917	171.274900
Ajeltake	Manta_8	6	7.067833	171.275233	7.068417	171.278000
Laura	Manta_1	1	7.163617	171.043650	7.165933	171.044383
Laura	Manta_1	2	7.165933	171.044617	7.167383	171.044900
Laura	Manta_1	3	7.167383	171.044900	7.169833	171.045100
Laura	Manta_1	4	7.169983	171.045267	7.171833	171.047367
Laura	Manta_1	5	7.171950	171.047450	7.174583	171.046133
Laura	Manta_1	6	7.175417	171.046417	7.177833	171.047817
Laura	Manta_16	1	7.114767	171.077950	7.114233	171.080500
Laura	Manta_16	2	7.114217	171.081033	7.113367	171.083533
Laura	Manta_16	3	7.113083	171.083833	7.112300	171.086133
Laura	Manta_16	4	7.112250	171.086250	7.111083	171.088183
Laura	Manta_16	5	7.111033	171.088383	7.110067	171.090567
Laura	Manta_16	6	7.111200	171.092000	7.111067	171.094467
Laura	Manta_2	1	7.183400	171.049633	7.185883	171.049833
Laura	Manta_2	2	7.186333	171.049650	7.188967	171.050333
Laura	Manta_2	3	7.189300	171.050217	7.192367	171.050933
Laura	Manta_2	4	7.192733	171.050850	7.196583	171.051583
Laura	Manta_2	5	7.197083	171.051400	7.199650	171.052267
Laura	Manta_2	6	7.199850	171.052333	7.202583	171.053050

Appendix 4 GPS positions of manta tow surveys conducted at the Ajeltake, Laura and Majuro monitoring sites

Site	Station ID	Replicate	Start Latitude (N)	Start Longitude (E)	End Latitude (N)	End Longitude (E)
Laura	Manta_3	1	7.136100	171.049867	7.133250	171.050300
Laura	Manta_3	2	7.132617	171.050550	7.130217	171.051467
Laura	Manta_3	3	7.130517	171.051700	7.127733	171.053350
Laura	Manta_3	4	7.127167	171.053683	7.125567	171.055917
Laura	Manta_3	5	7.125167	171.056167	7.123850	171.059433
Laura	Manta_3	6	7.122983	171.060167	7.121300	171.062217
Laura	Manta_4	1	7.121183	171.062417	7.119767	171.064800
Laura	Manta_4	2	7.119383	171.065217	7.119167	171.067567
Laura	Manta_4	3	7.118667	171.067617	7.118017	171.069967
Laura	Manta_4	4	7.117467	171.070117	7.115950	171.072233
Laura	Manta_4	5	7.116200	171.072533	7.115200	171.074283
Laura	Manta_4	6	7.114683	171.074667	7.113850	171.077133
Majuro	Manta_10	1	7.157300	171.214550	7.156750	171.216850
Majuro	Manta_10	2	7.156833	171.217067	7.156033	171.219550
Majuro	Manta_10	3	7.156000	171.219500	7.155217	171.222033
Majuro	Manta_10	4	7.155150	171.222083	7.154333	171.224850
Majuro	Manta_10	5	7.154450	171.224950	7.154450	171.227700
Majuro	Manta_10	6	7.154367	171.227700	7.153667	171.229883
Majuro	Manta_11	1	7.153817	171.230167	7.152417	171.232583
Majuro	Manta_11	2	7.152450	171.232633	7.151250	171.235083
Majuro	Manta_11	3	7.151133	171.235050	7.149567	171.237250
Majuro	Manta_11	4	7.149450	171.237233	7.148550	171.239650
Majuro	Manta_11	5	7.148250	171.239533	7.148250	171.242117
Majuro	Manta_11	6	7.148050	171.242083	7.146900	171.244467
Majuro	Manta_12	1	7.146650	171.244300	7.146350	171.246933
Majuro	Manta_12	2	7.146283	171.247083	7.145733	171.249583
Majuro	Manta_12	3	7.145750	171.250083	7.145400	171.252750
Majuro	Manta_12	4	7.145350	171.252967	7.145467	171.255633
Majuro	Manta_12	5	7.145483	171.255683	7.145517	171.258500
Majuro	Manta_12	6	7.145417	171.258883	7.146317	171.261617
Majuro	Manta_13	1	7.146600	171.264800	7.147017	171.267517
Majuro	Manta_13	2	7.146900	171.267567	7.147567	171.270167
Majuro	Manta_13	3	7.147383	171.270200	7.147750	171.272883
Majuro	Manta_13	4	7.147667	171.272967	7.148250	171.275683
Majuro	Manta_13	5	7.148250	171.275717	7.148000	171.278483
Majuro	Manta_13	6	7.148050	171.278517	7.148550	171.281100
Majuro	Manta_14	1	7.148333	171.281367	7.147700	171.284133
Majuro	Manta_14	2	7.147617	171.284183	7.146233	171.286083
Majuro	Manta_14	3	7.146233	171.286183	7.145100	171.288700
Majuro	Manta_14	4	7.144967	171.288833	7.143150	171.290700
Majuro	Manta_14	5	7.142967	171.290733	7.141417	171.292667
Majuro	Manta_14	6	7.141567	171.292767	7.139700	171.294567
Majuro	Manta_15	1	7.139217	171.295333	7.137933	171.297567
Majuro	Manta_15	2	7.138500	171.297767	7.136650	171.299817
Majuro	Manta_15	3	7.136683	171.299617	7.134700	171.301817

Site	Station ID	Replicate	Start Latitude (N)	Start Longitude (E)	End Latitude (N)	End Longitude (E)
Majuro	Manta_15	4	7.132317	171.304267	7.132750	171.303800
Majuro	Manta_15	5	7.131667	171.306867	7.131550	171.306300
Majuro	Manta_15	6	7.130067	171.308950	7.130083	171.308700
Ajeltake	Manta_5	1	7.072183	171.182333	7.072083	171.185183
Ajeltake	Manta_5	2	7.072133	171.185817	7.071167	171.188467
Ajeltake	Manta_5	3	7.071150	171.188767	7.070183	171.191583
Ajeltake	Manta_5	4	7.070233	171.191883	7.069650	171.194767
Ajeltake	Manta_5	5	7.069700	171.195350	7.068567	171.197967
Ajeltake	Manta_5	6	7.068267	171.198550	7.066917	171.200933
Ajeltake	Manta_6	1	7.064200	171.210083	7.062500	171.211767
Ajeltake	Manta_6	2	7.062033	171.212433	7.060850	171.215000
Ajeltake	Manta_6	3	7.060500	171.215717	7.059467	171.218650
Ajeltake	Manta_6	4	7.059250	171.218917	7.057933	171.222133
Ajeltake	Manta_6	5	7.057733	171.222850	7.057117	171.225517
Ajeltake	Manta_6	6	7.056783	171.225817	7.056917	171.225417
Ajeltake	Manta_7	1	7.056083	171.237083	7.056350	171.240017
Ajeltake	Manta_7	2	7.056450	171.240433	7.056983	171.243267
Ajeltake	Manta_7	3	7.057217	171.243933	7.058017	171.246750
Ajeltake	Manta_7	4	7.058233	171.247467	7.059417	171.249833
Ajeltake	Manta_7	5	7.059917	171.250450	7.061133	171.253283
Ajeltake	Manta_7	6	7.061283	171.253417	7.062283	171.256117
Ajeltake	Manta_8	1	7.062283	171.259383	7.063917	171.261450
Ajeltake	Manta_8	2	7.064150	171.262483	7.065150	171.265283
Ajeltake	Manta_8	3	7.065367	171.265667	7.066300	171.268383
Ajeltake	Manta_8	4	7.066400	171.268950	7.067033	171.271683
Ajeltake	Manta_8	5	7.067067	171.272217	7.067917	171.274900
Ajeltake	Manta_8	6	7.067833	171.275233	7.068417	171.278000
Laura	Manta_1	1	7.163617	171.043650	7.165933	171.044383
Laura	Manta_1	2	7.165933	171.044617	7.167383	171.044900
Laura	Manta_1	3	7.167383	171.044900	7.169833	171.045100
Laura	Manta_1	4	7.169983	171.045267	7.171833	171.047367
Laura	Manta_1	5	7.171950	171.047450	7.174583	171.046133
Laura	Manta_1	6	7.175417	171.046417	7.177833	171.047817
Laura	Manta_16	1	7.114767	171.077950	7.114233	171.080500
Laura	Manta_16	2	7.114217	171.081033	7.113367	171.083533
Laura	Manta_16	3	7.113083	171.083833	7.112300	171.086133
Laura	Manta_16	4	7.112250	171.086250	7.111083	171.088183
Laura	Manta_16	5	7.111033	171.088383	7.110067	171.090567
Laura	Manta_16	6	7.111200	171.092000	7.111067	171.094467
Laura	Manta_2	1	7.183400	171.049633	7.185883	171.049833
Laura	Manta_2	2	7.186333	171.049650	7.188967	171.050333
Laura	Manta_2	3	7.189300	171.050217	7.192367	171.050933
Laura	Manta_2	4	7.192733	171.050850	7.196583	171.051583
Laura	Manta_2	5	7.197083	171.051400	7.199650	171.052267
Laura	Manta_2	6	7.199850	171.052333	7.202583	171.053050

Site	Station ID	Latitude (N)	Longitude (E)
Drenmeo MPA	RBt_12	7.123	171.3154
Drenmeo MPA	RBt_19	7.121833	171.3164
Drenmeo MPA	RBt_9	7.120183	171.3167
Laura	RBt_1	7.1538	171.042
Laura	RBt_15	7.098033	171.1203
Laura	RBt_2	7.1698	171.0451
Laura	RBt_3	7.1827	171.0491
Laura	RBt_4	7.196867	171.0512
Laura	RBt_5	7.132683	171.0502
Majuro	RBt_8	7.1246	171.3128
Majuro	RBt_10	7.11935	171.3331
Majuro	RBt_11	7.121783	171.3461
Majuro	RBt_13	7.143683	171.2897
Majuro	RBt_14	7.14475	171.2892
Majuro	RBt_7	7.131083	171.3083
Woja MPA	RBt_16	7.09475	171.1301
Woja MPA	RBt_17	7.09345	171.1324
Woja MPA	RBt_18	7.092383	171.1354

Appendix 5	GPS positions of reef-benthos transects established at Majuro Atoll
------------	---

Appendix 6 Form used for creel surveys at Majuro Atoll

Creel survey carried out by	: [Enter organisation	/ department]	Serial / ID Number:
Type of creel survey:			
(if stratifying)			
Province / Island:			
Survey Time (Month / Year)	•		Currency used:
Survey Site:			1
Date of this replicate:			
Interviewers / surveyors names:	1.		2.
Latitude (DD):		Longitude (DI)):
<i>Slice C1 basic informatio</i> Lead Fisher's name:	on on fishers		
Date of Birth (DOB):		Gender:	
Address as Village / Town / City:			
Is the fisher with others?	Yes 🗆 No 🗆		
\rightarrow (data on other fishers in t	he landing today)		
Number of fishers:			
Name of other fisher 1:		DOB:	Gender:
Other fisher 2:		DOB:	Gender:
Other fisher 3:		DOB:	Gender:
Other fisher 4:		DOB:	Gender:
\rightarrow (back to Lead Fisher)			
How often do you go fishing	*	How many mo exclude closed	
	/month		months fished
What fishing methods do yo only this fishing trip)?	u usually use (not	Method 1:	
Method 2:		Method 3:	
Method 4:		Method 5:	

Where else do you land your f	fish? What other locations? List by priority
Other location 1:	How often?
(most often)	/month

Other location 2:			How often?	-
				/month
Other location 3:			How often?	
-				/month
Other location 4:			How often?	
(least often)				/month
Why do you go fishing?	Subsistence 🗆 I	ncome 🗆 Bot	h □ Other □	
Please provide details:				
About how much of today's				
catch will be eaten at home /				
sold?		%		%
What would you expect as inc	ome from today's	Value:	1	
catch overall?				
What is your eye-estimate of t	he total weight of			
the day's catch? (Estimated by	6			kg
fisher)				0
,				

Species name Lutjanus gibbus	(Separ Sz	ate by co	omma. F	Repeat s	necies ir		ine if vo	u need r	nore en	`
Lutjanus gibbus	Sz	TAT.	All sizes in the catch in cm All weights in kg (Separate by comma. Repeat species in a new line if you need more space)							
Lutjanus gibbus		Wt	Sz	Wt	Sz	Wt	Sz	Wt	Sz	W
	12.5	0.3	23.2	0.7						
							•			

C5 Effort data for CPUE

How many hours spent fishing	hrs
today?	

Species group	Methoo	ls / gears used	1		No hours
e.g. Herbivores	Spear f	ishing			4
e.g. Carnivores	Line fis				2
1.					
2.					
3.					
<u>4</u> .					
	ar losses duri	ng this fishing	trip? What and	how much to replace of	or repair?
Gear		oss / damage?	F	Cost to replace / repa	
1.					
2.					
3.					
<u>ع.</u> 4.					
	costs of this	fishing trip. [nclude fuel, wa	ges, ice, food, drink, any	other items
Item				Purchase price:	
1.				i ul chube price.	
2.					
3.					
<u>ي.</u> 4.					
What is the distance	to the furthe	est site vou fish	ed in today?		
triffic is the distance		ise site you non	cu in touuj.		Kr
How many sites did	vou stop and	fish in? Where	e are they?	<u>.</u>	
	1			1	
Site			n map. lat/long.	or distance to each fish	ing ground)
Site				or distance to each fish n patch, outer etc)	ing ground)
				or distance to each fish n patch, outer etc)	ing ground)
1.					ing ground)
1. 2.					ing ground)
1. 2. 3.					ing ground)
1. 2. 3. 4.	sed today?				ing ground)
1. 2. 3. 4. What kind of boat u		and reef type	e (back, lagoo	n patch, outer etc)	ing ground)
1. 2. 3. 4. What kind of boat u Construction: V	Vood 🗆 Fib	and reef type	e (back, lagoon	n patch, outer etc)	ing ground)
1. 2. 3. 4. What kind of boat u Construction: V Type of boat: C	Vood □ Fib Canoe □ D	and reef type	e (back, lagoo	n patch, outer etc)	ing ground)
1. 2. 3. 4. What kind of boat u Construction: V Type of boat: C	Vood □ Fib Canoe □ D	and reef type	e (back, lagoon	n patch, outer etc)	ing ground)
1. 2. 3. 4. What kind of boat u Construction: V Type of boat: C If "Other", What kin	Vood □ Fib Canoe □ D d of boat?	and reef type reglass □ Plas inghy □ Ban	e (back , lagoo n stic □ Steel □ ana boat □ C	n patch, outer etc)	
1. 2. 3. 4. What kind of boat u Construction: V Type of boat: C If "Other", What kin How is the boat	Vood □ Fib Canoe □ D d of boat?	and reef type reglass □ Plas inghy □ Ban	e (back , lagoo n stic □ Steel □ ana boat □ C	n patch, outer etc)	
1. 2. 3. 4. What kind of boat u Construction: V Type of boat: C If "Other", What kin How is the boat powered?	Vood □ Fib Canoe □ D d of boat?	and reef type reglass □ Plas inghy □ Ban	stic 🗆 Steel 🗆 ana boat 🗆 C	n patch, outer etc)	
1. 2. 3. 4. What kind of boat u Construction: V	Vood □ Fib Canoe □ D d of boat?	and reef type reglass □ Plas inghy □ Ban	e (back , lagoo n stic □ Steel □ ana boat □ C	n patch, outer etc)	
1. 2. 3. 4. What kind of boat u Construction: V Type of boat: C If "Other", What kin How is the boat powered?	Vood □ Fib Canoe □ D d of boat? Padc	and reef type reglass □ Plas inghy □ Ban	e (back, lagoon stic 🗆 Steel 🗆 ana boat 🗆 C Inboard 🗆 Engine (hp):	n patch, outer etc)	Stroke 🗆

C6 Catch prices Where will you use / sell this catch?		e 🗆 Market	\Box Buyer domestic \Box	Buyer export 🗆
How are the items so	old (units of sale) and v	what prices can	you expect?	
Item / group	Unit of sale	No. Per unit	Price / unit of sale	Price / item
1. Crabs	String	5	\$25 / string	\$5/crab
1.				
2.				
3.				
4.				

C6 Catch prices

C7 Perceptions of fishers

How long have you been fishing?	years
How long have you been doing this type of fishing?	years
What other types of fishing have you done in the past ?	
Do you do other types of fishing now ? Yes □ No □	Describe:
Are you fishing in the same areas as 5 years ago? Yes □ No □	Please explain:
Are you catching the same quantities as 5 years ago? Yes □ No □	Please explain:
Are you catching the same size as 5 years ago? Yes □ No □	Please explain:
If catches are different , what has changed?	
Do you have any concerns about the resources?	

Fishing method	Species	Number observed	% contribution by abundance	% contribution by weight
Bottom fishing	Epinephelus cyanopodus	2	0.81	0.65
8	Epinephelus fuscoguttatus	6	2.43	4.17
	Epinephelus maculatus	22	8.91	13.53
	Epinephelus polyphekadion	127	51.42	46.54
	Lethrinus erythropterus	16	6.48	6.40
	Lethrinus miniatus	3	1.21	2.45
	Lethrinus obsoletus	7	2.83	1.63
	Lethrinus olivaceus	7	2.83	4.61
	Lethrinus ornatus	7	2.83	1.80
	Lethrinus rubrioperculatus	5	2.02	1.59
	Lethrinus xanthochilus	3	1.21	1.23
	Lutjanus bohar	2	0.81	3.24
	Lutjanus gibbus	23	9.31	4.83
	Lutjanus vitta	1	0.40	0.25
	Monotaxis grandoculis	1	0.40	0.62
	Plectropomus leopardus	2	0.81	0.62
	Plectropomus maculatus	4	1.62	2.47
	Plectropomus oligacanthus	1	0.40	0.66
	Sargocentron spiniferum	3	1.21	0.56
	Variola louti	5	2.02	2.15
Spearfishing	Acanthurus auranticavus	1	0.07	0.02
	Acanthurus guttatus	1	0.07	0.03
	Acanthurus lineatus	273	18.22	10.84
	Acanthurus mata	44	2.94	5.19
	Acanthurus nigricauda	3	0.20	0.22
	Acanthurus nubilus	1	0.07	0.08
	Anyperodon leucogrammicus	1	0.07	0.05
	Caranx melampygus	3	0.20	0.41
	Cephalopholis argus	11	0.73	1.13
	Cetoscarus bicolor	1	0.07	0.30
	Cheilinus undulatus	1	0.07	0.27
	Chlorurus frontalis	2	0.13	0.35
	Chlorurus microrhinos	34	2.27	6.20
	Chlorurus sordidus	1	0.07	0.11
	Epinephelus cyanopodus	1	0.07	0.11
	Epinephelus fuscoguttatus	2	0.13	0.23
	Epinephelus hexagonatus	10	0.67	0.59
	Epinephelus howlandi	2	0.13	0.10
	Epinephelus macrospilos	4	0.27	0.36
	Epinephelus maculatus	6	0.40	0.85
	Epinephelus melanostigma	4	0.27	0.42
	Epinephelus merra	1	0.07	0.05

Appendix 7Number of individuals observed from various methods during creel surveys,
August 2013 and relative percent contribution to overall catch by method

Fishing method	Species	Number observed	% contribution by abundance	% contribution by weight
	Epinephelus polyphekadion	32	2.14	3.13
	Epinephelus socialis	1	0.07	0.08
	Epinephelus spilotoceps	4	0.27	0.22
	Hipposcarus longiceps	11	0.73	1.33
	Kyphosus vaigiensis	26	1.74	1.55
	Lethrinus harak	1	0.07	0.04
	Lethrinus laticaudis	1	0.07	0.15
	Lethrinus obsoletus	2	0.13	0.18
	Lutjanus fulvus	1	0.07	0.05
	Lutjanus gibbus	32	2.14	2.18
	Lutjanus semicinctus	1	0.07	0.08
	Monotaxis grandoculis	1	0.07	0.15
	Mulloidichthys flavolineatus	1	0.07	0.05
	Mulloidichthys vanicolensis	3	0.20	0.14
	Myripristis adusta	5	0.33	0.23
	Myripristis berndti	74	4.94	2.92
	Myripristis murdjan	57	3.81	1.75
	Myripristis pralinia	65	4.34	3.10
	Myripristis violacea	53	3.54	1.69
	Naso brachycentron	1	0.07	0.10
	Naso brevirostris	2	0.13	0.14
	Naso caesius	16	1.07	1.92
	Naso hexacanthus	1	0.07	0.09
	Naso lituratus	102	6.81	6.71
	Naso unicornis	36	2.40	8.18
	Panulirus sp.	75	5.01	9.74
	Parupeneus barberinus	9	0.60	0.70
	Parupeneus cyclostomus	4	0.27	0.25
	Parupeneus trifasciatus	1	0.07	0.08
	Plectropomus maculatus	4	0.27	0.58
	Priacanthus hamrur	61	4.07	2.50
	Pseudobalistes flavimarginatus	1	0.07	0.37
	Sargocentron spiniferum	23	1.54	1.28
	Sargocentron tiere	1	0.07	0.04
	Scarus oviceps	1	0.07	0.13
	Scarus rubroviolaceus	7	0.47	1.90
	Siganus argenteus	362	24.17	17.32
	Siganus puellus	9	0.60	0.53
	Siganus punctatus	1	0.07	0.11
	Variola louti	3	0.20	0.39