639.275× 11. ji ji di 🚅 Standardized CPUEs of Central and Western Pacific Yellowfin Tuna from Taiwanese Distant-Water Fisheries Chi-Lu Sun and Su-Zan Yeh Institute of Oceanography National Taiwan University Taipei, Taiwan, R.O.C.

SPE

Loan no. 20991 (c)

Introduction

Taiwan's distant-water tuna longline (or simply Taiwanese longline) vessels have been fishing in the Pacific Ocean since 1963, with the target species being albacore (Sun and Yeh 1992, 1993a). Taiwan's distant-water tuna purse seine (Taiwanese purse seine) vessels have been operating in the western Pacific since 1982, with the target species being skipjack and yellowfin tuna (Sun and Yeh 1992, 1993b).

The purpose of this paper is to provide standardized catches per unit effort (CPUEs) for yellowfin tuna caught in the central and western Pacific by the two fleets mentioned above. The standardized CPUEs may then find possible use in the stock assessments of the Western Pacific Yellowfin Tuna Research Group (WPYRG).

The general linear modeling technique was applied to estimate annual CPUEs of the longline and purse seine data for the periods 1967-1992 and 1983-1993, respectively.

Materials and Methods

Taiwanese longline fishery

Catch was represented by the number of fish taken, and effort was expressed in number of hooks used. These variables were presented by month in a 5°x 5° square area during the period 1967-1992. The nominal CPUE value represented catch in number of yellowfin per 1000 hooks.

The detailed procedure for standardization of the Taiwanese longline CPUE using the general linear model (GLM) method (Kimura 1981, Allen and Punsly 1984, Draper and Smith 1986) was described by Sun and Yeh (1993a). The main effects chosen to implement the GLM analyses were year, month, WPYF area, and spawning seasonarea.

The multiplicative model which was used last year was used again this year. The model is

$$\ln (CPUE_{ijkl} + 1) = \mu + Y_i + M_i + A_k + S_l + \varepsilon_{ijkl}$$

where

ln	is the natural logarithm,
CPUE _{jikl}	is the nominal catch rate (no. of fish/1000 hooks)
v -	in year i, month j, WPYF area k, and spawning
	season-area l,
μ	is the overall mean,
Υ _i	is year i,
М _і	is month j,
A _k	is WPYF area k,
Si	is spawning season-area l (peak or nonpeak), and
ε _{iikl}	is the error term, $N(0,\sigma)$.

Taiwanese purse seine fishery

For the Taiwanese purse seine fishery, catch was expressed as the tonnage of fish caught, and effort was represented by the number of days fishing. These variables were presented by month in a 5°x 5° square area (as opposed to the 2°x 5° area used last year) during the period 1983-1993. The nominal CPUE value represented catch in tonnage of yellowfin per day.

The detailed procedure for standardization of the Taiwanese purse seine CPUE using the GLM method was also described by Sun and Yeh (1993b). The main effects chosen to implement the GLM analyses were year, month, WPYF area, set type (new effect added, compared to last year's), and spawning season-area.

The multiplicative model, PS1, used in this analysis is

$$\ln (CPUE_{ijklm} + 1) = \mu + Y_i + M_j + A_k + T_l + S_m + \varepsilon_{ijklm}$$

where

ln	is the natural logarithm,
CPUE _{ijklm}	is the nominal catch rate (MT/day) in year i,
-	month j, WPYF area k, set type 1, and spawning
	season-area m,
μ	is the overall mean,
Y _i	is year i,
M _i	is month j,
A _k	is WPYF area k,
\mathbf{T}_{l}	is the set type 1,
Sm	is spawning season-area m (peak or nonpeak), and
${\cal E}_{ m ijklm}$	is the error term, $N(0,\sigma)$.

Data preparation and calculation employing SAS Statistical Software, Version 6.04, were performed on PC and HP850 computers.

Results and Discussion

Taiwanese longline fishery

The total number of observations for this analysis is 7,282. The frequecny distribution of the standardized residual for all variables' combined effects is shown in Figure 1A. The combined distribution of the standardized residual is very close to that of the normal distribution.

The results of using the GLM analysis of variance (ANOVA) to examine the logged catch rate for differences among variables (year, month, area, and spawning season-area) are shown in Table 1. All of the main variables as well as the whole model are statistically significant (p<0.01). The rate of variability explained by the model (i.e. R^2) is 0.50.

Figure 2 shows the least square mean (LSM) estimates of annual CPUE and their associated relative 95% confidence limits. There is a downward trend of CPUE after 1971 until 1977. An increase is apparent during the 1978-1979 period, followed by a decrease during 1980-1982. The CPUE is fairly stable from 1983 to 1988,

and from 1989 to 1992, the level maintains a low, stable condition.

Figure 3 illustrates the comparison between the CPUE values during the peak spawning season and area and non-peak spawning season and area. After three years of its lowest values during 1989-1991, the CPUE value of non-peak spawning season and area rises in 1992 to a level close to that of 1988.

There is no peak spawning season and area data in 1992 for the Taiwanese longline fishery. Therefore, we cannot update 1992's CPUE in the peak spawning season and area for that fishery. This lack of data could possibly be due or related to a poor coverage rate of the Taiwanese longline data or a shifting of the fishing grounds of the Taiwanese longline fleets. Further confirmation is needed in this regard.

Taiwanese purse seine fishery

The total number of observations for this analysis is 1,563. After the first run of ANOVA, the results indicate that two main variables, area and spawning season-area, are statistically insignificant (p>0.5). They were therefore removed from the model.

The results of ANOVA for the altered model are shown in Table 2. The remaining three variables (year, month, and set type) as well as the whole model are statistically significant (p<0.01). The rate of variability explained by the model (i.e. R^2) is fairly low (0.22). The overall distribution of standardized residual (Figure 1B) is close to the normal curve.

Figure 4 shows the LSM estimates of annual CPUE and the lower and upper 95% confidence limits. The CPUE has increased since 1991 to a maximum of 4.6 MT per day in 1993.

In order to improve the above model (PS1), which has a relatively low R^2 , the two-way interactions of the three main variables were considered for further analysis. The new model, PS2, was

 $\ln (CPUE_{ijk}+1) = \mu + Y_i + M_j + S_k + Y_iM_j + Y_iS_k + M_jS_k + \varepsilon_{ijk}$

The results of ANOVA are abown in Table 3. Although the "month" variable is statistically insignificant (p>0.05), its interactions with the "set type" and "year" variables are significant (p<0.05). Therefore, "month" is retained in the model.

The R^2 of this model (0.37) is higher than that of the model which did not include the interaction terms. The combined distribution of the standardized residuals is close to that of a normal distribution (Figure 1C).

The LSM estimates of annual CPUE and their associated relative 95% confidence limits are shown in Figure 5. In this data set, LSM estimates adjusted for the three significant interactions are not possible for 1983-1985 due to missing data in this period. Also in Figure 5 the 95% confidence limits of the standardized CPUE are wide in 1992 and 1993 compared to the other years of this model as well as PS1.

The trend of the estimates of the CPUEs from both models are consistent with each other. The CPUE values in PS1 during 1986-1989, however, are greater than those of PS2, while the situation in all other years is reversed. In 1993, the values of both models are similar.

Since the adoption of PS2 model would result in the loss of the CPUE values for 1983-1985 as mentioned before, we finally decide to adopt the PS1 model.

References cited

- Allen R. and R. Punsly. 1984. Catch rate as indices of abundance of yellowfin tuna, in the eastern Pacific Ocean. IATTC Bull. 18(4): 303-379.
- Draper, N.R. and H. Smith. 1981. Applied regression analysis. John Wiley and Sons, Inc., New York. 708pp.

- Kimura, D.K. 1981. Standardized measures of relative abundance based on modeling log(CPUE) and their application to Pacific Ocean perch. J. Cons. Int. Explor. Mer. 39: 211-218.
- Sun, C.L. and S.Z. Yeh. 1992. Taiwan's yellowfin tuna fisheries in the central and western Pacific Ocean. Working Document WPYRG2/10.
- Sun, C.L. and S.Z. Yeh. 1993a. Standardized catch rates of yellowfin tuna (*Thunnus albacore*) from the Taiwan tuna longline fishery in the central and western Pacific Ocean. Working Document WPYRG3/11.
- Sun, C.L. and S.Z. Yeh. 1993b. Trend of abundance index of yellowfin tuna from Taiwan purse seine fishery in the central and western Pacific Ocean. Working Document WPYRG3/12.

Table 1. Analysis of variance results for the GLM model fitted to the yellowfin CPUE data from Taiwan longline fishery.											
General L Class Lev			cedure								
Class	Levels	Values									
YEAR	26		59 70 71 33 84 85							80	
MONTH	12	1234	4567	3910	11	12					
AREA	5	3450	57								
SPAWN	2	N P									
Number of	observa	tions in	data se	t = 72	82						
Dependent	Variable	e: LNCPUI	2								
Source		DF	Sum of	Square	S	M	lean	Sq	uare	F Value	Pr > F
Model		41	3585.9	602517	2	8	37.4	624	4516	174.01	0.0
Error		7240	3639.0	754924	3		0.5	026	3474		
Corrected	Total	7281	7225.0	357441	4						
	R	Square		c.v	•		R	oot	MSE		LNCPUE Mean
	0.	496324	5	3.4343	7		0.7	089	6737		1.32680037
Source		DF	Ту	pe I S	s	M	lean	Sq	uare	F Value	Pr > F
YEAR		25 11	1650.4	567719 305396					7088	131.34 41.71	
MONTH AREA		4	1478.7					-	6253	735.50	
SPAWN		1		142899		22	26.1	142	8995	449.86	0.0001
Source		DF	Туре	III S	S	M	lean	Sç	uare	F Value	Pr > F
YEAR		25	946.8	258754	5	3	87.8	730	3502	75.35	
MONTH		11		777179		• •			8345	7.94	
AREA SPAWN		4 1	1322.2	170010 142899					5025 8995	657.64 449.86	
St Hinn		-	220.1		5	z . 2		-74		442.00	0.0001

•

Table 2. Analysis of variance results for the GLM model (PS1) fitted to the yellowfin CPUE from Taiwan purse seine fishery.

د

,

١

General Linear Models Procedure Class Level Information

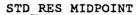
Class	Levels	Values
SETTYPE	4	1 2 3 4
YEAR	11	83 84 85 86 87 88 89 90 91 92 93
MONTH	12	1 2 3 4 5 6 7 8 9 10 11 12

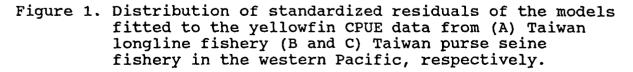
Number of observations in data set = 1563

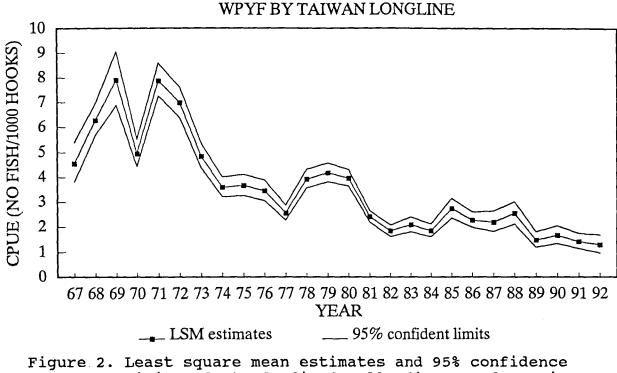
Dependent Variable: LNCPUE

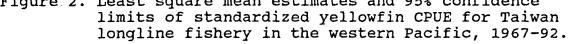
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	24	395.75900825	16.48995868	17.82	0.0001
Error	1538	1423.17028489	0.92533829		
Corrected Total	1562	1818.92929314			
F	-Square	c.v.	Root MSE	LNC	PUE Mean
C	.217578	89.48947	0.96194505	1.0	07492537
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SETTYPE YEAR MONTH	3 10 11	162.60764976 199.64900616 33.50235233	54.20254992 19.96490062 3.04566839	58.58 21.58 3.29	0.0001 0.0001 0.0002
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SETTYPE YEAR MONTH	3 10 11	97.60753941 204.03929850 33.50235233	32.53584647 20.40392985 3.04566839	35.16 22.05 3.29	0.0001 0.0001 0.0002

Table 3. Analysis of variance results for the GLM model (PS2) fitted to the yellowfin CPUE from Taiwan purse seine fishery.

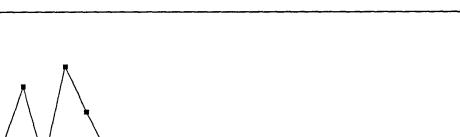

General Linear Models Procedure Class Level Information


Class	Levels	Values	
SETTYPE	4	1 2 3 4	
YEAR	11	83 84 85 86 87 88 89 90 91 92 93	ł
MONTH	12	1 2 3 4 5 6 7 8 9 10 11 12	
Number o	f observat	ions in data set = 1563	

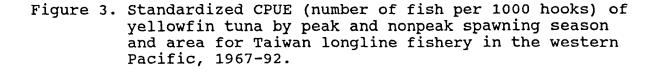

Dependent Variable: LNCPUE


Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	186	671.49042702	3.61016359	4.33	0.0001
Error	1376	1147.43886613	0.83389452		
Corrected Tota	1 1562	1818.92929314			
	R-Square	C.V.	Root MSE	LNCH	PUE Mean
	0.369168	84.95271	0.91317825	1.0	07492537
Source	DF	Type I SS	Mean Square	F Value	Pr > F
SETTYPE	3	162.60764976	54.20254992	65.00	0.0001
YEAR	10	199.64900616	19.96490062	23.94	0.0001
MONTH	11	33.50235233	3.04566839	3.65	0.0001
SETTYPE*YEAR	26	95.66702162	3.67950083	4.41	0.0001
SETTYPE*MONTH	33	39.54675167	1.19838641	1.44	0.0526
YEAR*MONTH	103	140.51764547	1.36424899	1.64	0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
SETTYPE	3	8.34158389	2.78052796	3.33	0.0188
YEAR	10	69.12767596	6.91276760	8.29	0.0001
MONTH	11	11.31138659	1.02830787	1.23	0.2594
SETTYPE*YEAR	26	82.88178435	3.18776094	3.82	0.0001
SETTYPE*MONTH	33	42.16746290	1.27780191	1.53	0.0279
YEAR*MONTH	103	140.51764547	1.36424899	1.64	0.0001

20


15

10


5

0

CPUE (NO FISH/1000 HOOKS)

WPYF BY TAIWAN LONGLINE

____ Peak spawning

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 YEAR

___ Nonpeak spawning

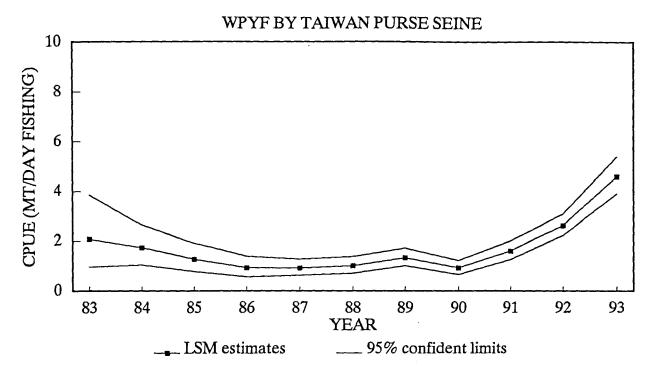
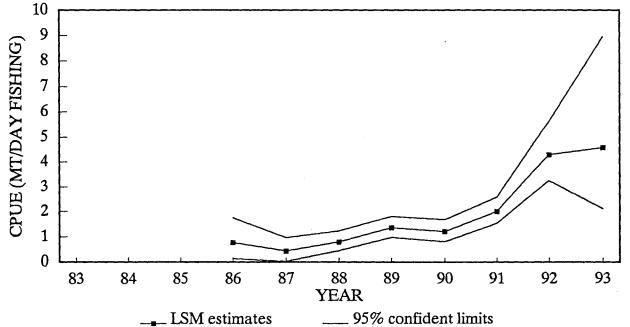
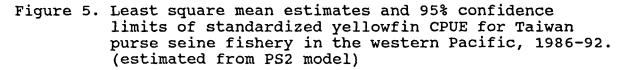




Figure 4. Least square mean estimates and 95% confidence limits of standardized yellowfin CPUE for Taiwan purse seine fishery in the western Pacific, 1983-92. (estimated from PS1 model)

