

Japanese yellowfin tuna fisheries in the western and central Pacific and updated CPUE from those fisheries

Naozumi Miyabe National Research Institute of Far Seas Fisheries 5 chome 7-1, Orido, Shimizu 424, Japan

Working paper for the 4th Meeting of the Western Pacific Yellowfin Tuna Research Group, Koror, Palau, August 9-11, 1994.

Japanese yellowfin tuna fisheries in the western and central Pacific and updated CPUE from those fisheries

Naozumi Miyabe National Research Institute of Far Seas Fisheries 5 chome 7-1, Orido, Shimizu 424, Japan

1. Introduction

This paper presents a brief description of the Japanese yellowfin fisheries and fishing condition in 1993. Nominal and standardized CPUEs are updated and given for longline and purse seine fisheries. Yellowfin had been dominating in quantity among the tuna species caught by the Japanese longline fishery in the total WPYF area, but it became the second important species since around 1985. In the purse seine and pole and line fisheries, it has been secondary species following to skipjack. The magnitude of fleet by fishery has been stable for purse seine fishery, slightly decreasing for longline fishery in total WPYF area due to decline of offshore licensed boat for longline and distant water licensed boat for pole and line fishery.

The information on fishing condition and preliminary estimates of catch in 1993 were taken from the internal report of the National Research Institute of Far Seas Fisheries.

2. Catch by fishery and fishing condition in 1993

Longline fishery

The estimate for the catch in 1993 is not yet available. However, about the same catch is expected as in 1992. The geographical distribution of 1992 yellowfin catch for offshore and distant water longliners (>50 GRT) is shown in Fig. 1. This pattern is similar to that of 1991. The average catch was 0.9-1.0 MT/day/boat in gilled and gutted weight in the Micronesian waters west of 150°E. In the east of that (Marshall, Truck and Kiribati), it was about 1.3 MT/day/boat with higher catch rate of bigeye in the northern area (5°-11°N). Around Solomon Islands, Coral Sea to New Caledonia (10°-15°S, 145°-165°E), fairly good catches of yellowfin, including albacore and billfishes by distant water longliners were recorded (4.0 MT/day/boat) especially during the first quarter of the 1993. Stable catch of 2.0 MT/day/boat was reported during the rest of year.

Purse seine fishery

1993 catch by species is estimated to be 56,000 MT and 89,000 MT for yellowfin and skipjack respectively. The catch of yellowfin is the record highest but the catch of skipjack went down below 100,000 MT for the first time since 1983. The fishing area ranged mostly in the waters $8^{\circ}N-6^{\circ}S$, $130^{\circ}-170^{\circ}E$ (Fig. 2) in the western tropical Pacific.

During the first half of 1993, the sea surface temperature (SST) was low because there were some remaining effect of El Nino. In April, high SST over 29°C started to emerge in part in the waters west of 165°E. Due to a low availability of floating logs, the catch was low for fish schools associated with floating objects. Instead, free swimming schools were targeted during this period. This is apparently one of the reasons of the decline of skipjack catch. Since the ability of fishing devices has improved significantly (i.e., faster fastening of purse, powerful power block, etc), the rate of successful set was increased. The fleet targeted free swimming large yellowfin, and very good catch was recorded especially in June and July. Due to low SST, the distribution of skipjack seemed to be very different from the normal pattern, and there were no formation of fishing ground in the area west of 155°E for skipjack. It was reported the log associated operations has increased during fall.

Pole and line fishery

Pole and line fishery takes considerable amount of yellowfin between 5,000 and 10,000 MT in recent years. The major areas of catch locate temperate waters around Japan and tropical waters in the western Pacific (Fig. 3). In average, 70 to 80 % of total yellowfin catch was made in the former area. During January to April in 1993, the larger boats operated in the area 1°S-9°N, 164°-175°W with very high catch. Medium-sized boat (299-350 GRT) fished in the area 5°-13°N, 140°-162°E, then shifted north in April. In June, the fishing effort was directed towards albacore in the north Pacific. After the albacore fishing was ended in early August, the fleet still stayed in the north Pacific targeting skipjack around Japan and Emperor sea mount area. Accordingly, there were almost no fishing activity in the tropical region until the end of October. After the fleet turned to south, fishing ground was first formed at the waters east of Mariana Islands and then formed in the western side of that area. Larger boats operated in far east (2°S-4°N, 164°-175°W). The fishing was generally good but the catch varied among boats.

3. Nominal CPUE

Nominal CPUE of yellowfin by fishery is shown in Fig. 4. The nominal CPUE of the longline fishery shows stable trend up until 1976 and jumped up during the successive two years. Then it continued to decrease gradually to date. The level in 1992 is slightly less than the pre-1976 level. The nominal CPUE of the purse seine fishery increased steadily except the high peak in 1974 until 1981. After that, it stayed slightly lower level, then it went up again since 1991. 1992 point is the record high. CPUE of pole and line fishery after 1981 showed gradual increase trend through this period.

4. Standardized CPUE

Longline fishery

GLM technique was used for the standardization of CPUE. The model developed here is a similar one used in Tsuji and Okamoto (1993) but modified so as to incorporate more factors such as gear and targeting (by-catch). Those are :1) WPYF areas 3-5 was divided into 15 subareas (Fig. 4), 2) as a fishing season, month was used rather than quarter of the year, 3) gear effect (deep longlining, i.e., number of hooks between floats) was considered, and 4) by-catch (other than yellowfin, i.e., bigeye and albacore catch rates) was taken into account. Regarding 3), each number of hooks between floats was aggregated to fewer classes (4 classes) by looking at the preliminary run which includes all main effects and one interaction term (month and area). Catch rates of other tunas were also similarly treated, for example, 5

classes for bigeye and 3 classes for albacore, respectively. Another option, which was introduced as well, was that this factor was treated as nominal variable rather than class variable.

Results of ANOVA and estimated parameters were shown in Table 4. It should be noted that adding catch rates of bigeye extremely improved the fit of the model. Inclusion of this factor pushed r-square up to nearly 90 % and 80 % when it was treated as class or nominal variable, respectively. When catch rates of bigeye was not included, r-square was about 40 %. The estimated parameters for this factor as class variable indicate that there are strong positive correlation between catch rates of bigeye and yellowfin. The standardized CPUEs (Fig. 5) are different between the two. The one in which by catch factor was treated as class variable shows fairly stable trend whilst the other shows decreasing trend after 1981 with some fluctuation. At this point, it is very difficult to judge which CPUE does better reflect the real abundance. It is essential to examine what and how each factor affects CPUE.

Purse seine fishery

The standardized CPUE for purse seine fishery was updated by using same model and same data series as Tsuji and Okamoto (1993). The finally selected model by them was multiplicative and additive models for small and large yellowfin, respectively. In this study, standardized CPUE was also estimated for total yellowfin (small and large together). The CPUE for small yellowfin shows stable trend with 83, 86, 87 being high. That for large yellowfin shows increase after 1987. That of total yellowfin is slightly increasing showing inbetween trend.

5. Sampling of gonad for reproductive biology

In order to perform the reproductive biology for the better understanding spawning activity, sex ratio and size at maturity, the sampling program for yellowfin gonad has started since May 1994. NRIFSF asked sampling of yellowfin gonad to training longline boats of fisheries high school and research vessels of Japan's Marine Resources Research Center. Up to now, about 10 boats made sampling (600 females) and sent them to NRIFSF in frozen condition. More samples are expected to be obtained during this year and next year. The area of sampling is rather limited, approximately from the areas 10°-15°N, 175°E-160°W and 4°S-5° N, 160°-167°E.

References

Tsuji, S. and H. Okamoto. 1993. CPUE analysis of Japanese fisheries for yellowfin tuna in the central and western Pacific. WPYRG3/Working. Paper. No.7. 24pp.

Table 1. Catch in number (in thousand) and fishing effort of the Jananese Longline Fisherv in WPYF total area.

YFT WGT	40970	35664	38301	38094	37214	36685	40420	47794	66576	57623	69063	56520	47864	51808	39654	46830	32161	29237	37827	29878	32408	22544	
YFT	1149	1056	1046	1134	1152	9 62	1118	1535	2213	1759	2294	1930	1617	1627	1254	1328	966	106	1077	859	890	635	
BET	694	720	976	684	778	734	871	983	839	939	913	756	872	815	889	947	752	942	769	827	933	680	
ALB	1072	786	721	793	641	425	762	647	573	699	703	1047	1007	856	717	764	673	660	789	741	793	689	
Hooks	172	176	174	160	185	158	179	169	183	213	222	242	225	198	203	211	184	182	202	185	171	158	
Year	70	11	72	73	74	75	76	11	78	6L	80	81	82	83	84	85	86	87	88	89	60	16	
•													^										

Table 2. Total catch (MT) by the Japanese purse seine fishery in WPYF area.

BET	0	129	119	182	294	265	390	302	609	706	564	925	1131	1468	697	1379	1531	1602	605	1527	2121	1528	2561	2623	data)
YFT	164	2867	4184	7281	9419	5595	7649	6807	8523	19013	19701	27161	31035	30819	38647	47925	44463	44504	30106	40872	37617	46255	52889	55741	internal
SKJ	365	7948	12145	12356	4841	6749	17719	18255	25821	28298	41138	43912	75016	115731	128528	119155	130805	112924	174346	120495	138299	142404	136690	88724	ai (Nrifsf
fishing	114	2659	3322	3364	2069	2511	3136	2638	2932	4219	4203	5325	7159	10085	12698	12473	11716	11189	11177	11273	10056	9476	9156	¢.	provision
Year Days	5	11	72	73	74	75	76		78	61	80	81	82	83	84	85	86	87	88	68	6	16	92	6 3*	1993 is

.

,

Year	Days	fishing	SKJ	YFT	BET
81		60768	192625	9050	2337
82		56619	182218	9490	3807
83		48343	209300	9326	3762
84		465 31	245243	8690	3192
85		43324	158513	12920	3981
86		40093	222149	8410	2519
87		38657	171754	8464	2810
88		29420	179875	7304	3644
89		31998	172720	7808	3544
90		28927	103259	5867	2659
91		22330	144846	5405	1230
92		21735	109446	6829	1033
93*		?	140627	?	?

Table 3. Total catch (MT) by the Japanese pole and line fishery in WPYF area.

Ì.

Table 4-1. The results of ANOVA and sum of squares explained by factor in the General Linear Model analysis applied for the Japanese longline yellowfin CPUE. Bigeye catch rates are treated as class variable. - ---

.

Number of observations in data set = 35691

General Linear Models Procedure

Dependent Variabl	e: LCPUE			
Source	DF	Sum of Squares	Mean Square	F Value Pr > F
Model	181	35688.3427	197.1732	1807.61 0.0001
Error	35509	3873.2980	0.1091	
Corrected Total	35690	39561.6408		
	R-Square	C.V.	Root MSE	LCPUE Mean
	0.902095	7.669533	0.33027	4.30628
Source	DF	Type III SS	Mean Square	F Value Pr > F
YEAR MONTH AREA ED - hooks/bag ALB BET MONTH*AREA	17 11 12 . Let 3 2 4 132	20.7065 9.1852 283.6090 2.5597 12.7523 16176.5030 221.7379	1.2180 0.8350 23.6341 0.8532 6.3762 4044.1257 1.6798	$\begin{array}{ccccccc} 11.17 & 0.0001 \\ 7.66 & 0.0001 \\ 216.67 & 0.0001 \\ 7.82 & 0.0001 \\ 58.45 & 0.0001 \\ 37075.09 & 0.0001 \\ 15.40 & 0.0001 \end{array}$
Parameter	Estimate	T for HO Parameter	: Pr > T =0	Std Error of Estimate
ED 1 2 3	0.022905981 -0.008952150 0.002621753	B 3. B -1. B 0.	14 0.0017 06 0.2874 48 0.6329	7 0.00729504 4 0.00841522 9 0.00548851
ALB 1 2 3	-0.053585921	B -10. B -5.	80 0.000 36 0.000	0.00496211 0.00692363
BET 1 2 3 4 5	-2.715728240 -1.685302150 -1.196298074 -0.682626353 0.000000000	B -365. B -255. B -184. B -126.	72 0.000 52 0.000 52 0.000 74 0.000	L 0.00742570 L 0.00659546 L 0.00648315 L 0.00538606

Table 4-2. The results of ANOVA and sum of squares explained by factor in the General Linear Model analysis applied for the Japanese longline yellowfin CPUE. Bigeye catch rates are treated as nominal variable.

Number of observations in data set = 35691

Dependent Variabl	e: LCPUE	Sum of	None		
Source	DF	Squares	Square	F Value	Pr > F
Model	176	31469.4557	178.8037	784.71	0.0001
Error	35514	8092.1851	0.2279		
Corrected Total	35690	39561.6408			
	R-Square	C.V.	Root MSE	LC	PUE Mean
	0.795454	11.08487	0.47735		4.30628
Source	DF	Type III SS	Mean Square	F Value	Pr > F
YEAR MONTH AREA ED CBET MONTH * AREA	17 11 12 3 1 132	150.2787 39.9408 2384.0531 16.5498 11969.9991 520.3043	8.8399 3.6310 198.6711 5.5166 11969.9991 3.9417	38.80 15.94 871.90 24.21 52532.48 17 30	0.0001 0.0001 0.0001 0.0001 0.0001

ļ.

•

Fig. 1. Geographical distribution of yellowfin catch (in number) by the Japanese longline fishery.

Fig. 2. Geographical distribution of yellowfin catch (MT) by the Japanese purse seine fishery.

Fig. 3. Geographical distribution of yellowfin catch (MT) by the Japanese pole and line fishery.

Fig. 4. Area division used for the statdardization of yellowfin CPUE by the Japanese longline fishery.

9

i

Fig. 6. Standardized CPUE for the Japanese longline fishery.

small yellowfin.

large yellowfin.

•...

Fig. 9. Standardized CPUE for the Japanese purse seine fishery, small+large yellowfin.